PhysLean/HepLean/BeyondTheStandardModel/Spin10/Basic.lean
2024-12-05 06:49:50 +00:00

53 lines
2.2 KiB
Text

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.BeyondTheStandardModel.PatiSalam.Basic
import HepLean.BeyondTheStandardModel.GeorgiGlashow.Basic
import HepLean.Meta.Informal.Basic
/-!
# The Spin(10) Model
Note: By physicists this is usually called SO(10). However, the true gauge group involved
is Spin(10).
-/
namespace Spin10Model
informal_definition GaugeGroupI where
math :≈ "The group `Spin(10)`."
physics :≈ "The gauge group of the Spin(10) model (aka SO(10)-model.)"
informal_definition inclPatiSalam where
physics :≈ "The inclusion of the Pati-Salam gauge group into Spin(10)."
math :≈ "The lift of the embedding `SO(6) x SO(4) → SO(10)` to universal covers,
giving a homomorphism `Spin(6) x Spin(4) → Spin(10)`. Precomposed with the isomorphism,
``PatiSalam.gaugeGroupISpinEquiv, between `SU(4) x SU(2) x SU(2)` and `Spin(6) x Spin(4)`."
ref :≈ "Page 56 of https://math.ucr.edu/home/baez/guts.pdf"
deps :≈ [``GaugeGroupI, ``PatiSalam.GaugeGroupI, ``PatiSalam.gaugeGroupISpinEquiv]
informal_definition inclSM where
physics :≈ "The inclusion of the Standard Model gauge group into Spin(10)."
math :≈ "The compoisiton of ``embedPatiSalam and ``PatiSalam.inclSM."
ref :≈ "Page 56 of https://math.ucr.edu/home/baez/guts.pdf"
deps :≈ [``inclPatiSalam, ``PatiSalam.inclSM]
informal_definition inclGeorgiGlashow where
physics :≈ "The inclusion of the Georgi-Glashow gauge group into Spin(10)."
math :≈ "The Lie group homomorphism from SU(n) → Spin(2n) dicussed on page 46 of
https://math.ucr.edu/home/baez/guts.pdf for n = 5."
deps :≈ [``GaugeGroupI, ``GeorgiGlashow.GaugeGroupI]
informal_definition inclSMThruGeorgiGlashow where
physics :≈ "The inclusion of the Standard Model gauge group into Spin(10)."
math :≈ "The composition of ``inclGeorgiGlashow and ``GeorgiGlashow.inclSM."
deps :≈ [``inclGeorgiGlashow, ``GeorgiGlashow.inclSM]
informal_lemma inclSM_eq_inclSMThruGeorgiGlashow where
math :≈ "The inclusion ``inclSM is equal to the inclusion ``inclSMThruGeorgiGlashow."
deps :≈ [``inclSM, ``inclSMThruGeorgiGlashow]
end Spin10Model