PhysLean/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean
2024-04-17 14:25:17 -04:00

78 lines
2.4 KiB
Text

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SM.Basic
import HepLean.AnomalyCancellation.SM.NoGrav.Basic
import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization
universe v u
/-!
# Lemmas for 1 family SM Accs
The main result of this file is the conclusion of this paper:
https://arxiv.org/abs/1907.00514
That eveery solution to the ACCs without gravity satifies for free the gravitational anomaly.
-/
namespace SM
namespace SMNoGrav
namespace One
open SMCharges
open SMACCs
open BigOperators
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
E S.val (0 : Fin 1) = 0 := by
let S' := linearParameters.bijection.symm S.1.1
have hC := cubeSol S
have hS' := congrArg (fun S => S.val) (linearParameters.bijection.right_inv S.1.1)
change S'.asCharges = S.val at hS'
rw [← hS'] at hC
apply Iff.intro
intro hQ
exact S'.cubic_zero_Q'_zero hC hQ
intro hE
exact S'.cubic_zero_E'_zero hC hE
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
accGrav S.val = 0 := by
rw [accGrav]
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
erw [hQ, E_zero_iff_Q_zero.mp hQ]
have h1 := SU2Sol S.1.1
have h2 := SU3Sol S.1.1
simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk, accSU3] at h1 h2
erw [hQ] at h1 h2
simp_all
linear_combination 3 * h2
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0) :
accGrav S.val = 0 := by
have hE := E_zero_iff_Q_zero.mpr.mt hQ
let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩
have hC := cubeSol S
have hS' := congrArg (fun S => S.val.val)
(linearParametersQENeqZero.bijection.right_inv ⟨S.1.1, And.intro hQ hE⟩)
change _ = S.val at hS'
rw [← hS'] at hC
rw [← hS']
exact S'.grav_of_cubic hC
/-- Any solution to the ACCs without gravity satifies the gravitational ACC. -/
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} : accGrav S.val = 0 := by
by_cases hQ : Q S.val (0 : Fin 1)= 0
exact accGrav_Q_zero hQ
exact accGrav_Q_neq_zero hQ
end One
end SMNoGrav
end SM