PhysLean/HepLean/SpaceTime/LorentzGroup/Orthochronous.lean
2024-05-17 11:52:16 -04:00

124 lines
4.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Proper
import Mathlib.GroupTheory.SpecificGroups.KleinFour
/-!
# The Orthochronous Lorentz Group
We define the give a series of lemmas related to the orthochronous property of lorentz
matrices.
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
namespace lorentzGroup
/-- The determinant of a member of the lorentz group is `1` or `-1`. -/
lemma det_eq_one_or_neg_one (Λ : lorentzGroup) : Λ.1.1.det = 1 Λ.1.1.det = -1 := by
simpa [← sq, det_one, det_mul, det_mul, det_mul, det_transpose, det_η] using
(congrArg det ((PreservesηLin.iff_matrix' Λ.1).mp ((mem_iff Λ.1).mp Λ.2)))
local notation "ℤ₂" => Multiplicative (ZMod 2)
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
instance : DiscreteTopology ℤ₂ := by
exact forall_open_iff_discrete.mp fun _ => trivial
instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk
/-- A continuous function from `({-1, 1} : Set )` to `ℤ₂`. -/
@[simps!]
def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
toFun x := if x = ⟨1, by simp⟩ then (Additive.toMul 0) else (Additive.toMul (1 : ZMod 2))
continuous_toFun := by
haveI : DiscreteTopology ({-1, 1} : Set ) := discrete_of_t1_of_finite
exact continuous_of_discreteTopology
/-- The continuous map taking a lorentz matrix to its determinant. -/
def detContinuous : C(lorentzGroup, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨Λ.1.1.det, Or.symm (lorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
exact Continuous.matrix_det $
Continuous.comp' Units.continuous_val continuous_subtype_val}
lemma detContinuous_eq_iff_det_eq (Λ Λ' : lorentzGroup) :
detContinuous Λ = detContinuous Λ' ↔ Λ.1.1.det = Λ'.1.1.det := by
apply Iff.intro
intro h
simp [detContinuous] at h
cases' det_eq_one_or_neg_one Λ with h1 h1
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> simp_all [h1, h2, h]
rw [← toMul_zero, @Equiv.apply_eq_iff_eq] at h
change (0 : Fin 2) = (1 : Fin 2) at h
simp only [Fin.isValue, zero_ne_one] at h
nth_rewrite 2 [← toMul_zero] at h
rw [@Equiv.apply_eq_iff_eq] at h
change (1 : Fin 2) = (0 : Fin 2) at h
simp [Fin.isValue, zero_ne_one] at h
intro h
simp [detContinuous, h]
/-- The representation taking a lorentz matrix to its determinant. -/
@[simps!]
def detRep : lorentzGroup →* ℤ₂ where
toFun Λ := detContinuous Λ
map_one' := by
simp [detContinuous]
map_mul' := by
intro Λ1 Λ2
simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero,
mul_ite, mul_one, ite_mul, one_mul]
cases' (det_eq_one_or_neg_one Λ1) with h1 h1
<;> cases' (det_eq_one_or_neg_one Λ2) with h2 h2
<;> simp [h1, h2, detContinuous]
rfl
lemma detRep_continuous : Continuous detRep := detContinuous.2
lemma det_on_connected_component {Λ Λ' : lorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
Λ.1.1.det = Λ'.1.1.det := by
obtain ⟨s, hs, hΛ'⟩ := h
let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous
haveI : PreconnectedSpace s := isPreconnected_iff_preconnectedSpace.mp hs.1
simpa [f, detContinuous_eq_iff_det_eq] using
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
lemma det_of_joined {Λ Λ' : lorentzGroup} (h : Joined Λ Λ') : Λ.1.1.det = Λ'.1.1.det :=
det_on_connected_component $ pathComponent_subset_component _ h
/-- A Lorentz Matrix is proper if its determinant is 1. -/
@[simp]
def IsProper (Λ : lorentzGroup) : Prop := Λ.1.1.det = 1
instance : DecidablePred IsProper := by
intro Λ
apply Real.decidableEq
lemma IsProper_iff (Λ : lorentzGroup) : IsProper Λ ↔ detRep Λ = 1 := by
rw [show 1 = detRep 1 by simp]
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
simp only [IsProper, OneMemClass.coe_one, Units.val_one, det_one]
end lorentzGroup
end spaceTime
end