187 lines
7.4 KiB
Text
187 lines
7.4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Elab
|
||
import HepLean.Tensors.ComplexLorentz.Basic
|
||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||
/-!
|
||
|
||
## Lemmas related to complex Lorentz tensors.
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace Fermion
|
||
|
||
/-- The vectors forming a basis of
|
||
`complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down])`.
|
||
Not proved it is a basis yet. -/
|
||
def coCoBasis (b : Fin 4 × Fin 4) :
|
||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]) :=
|
||
PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.1)
|
||
(fun i => Fin.cases (Lorentz.complexCoBasisFin4 b.2) (fun i => i.elim0) i) i)
|
||
|
||
lemma coCoBasis_eval (e1 e2 : Fin (complexLorentzTensor.repDim Color.down)) (i : Fin 4 × Fin 4) :
|
||
complexLorentzTensor.castFin0ToField
|
||
((complexLorentzTensor.evalMap 0 e2) ((complexLorentzTensor.evalMap 0 e1) (coCoBasis i))) =
|
||
if i = (e1, e2) then 1 else 0 := by
|
||
simp only [coCoBasis]
|
||
have h1 := @TensorSpecies.evalMap_tprod complexLorentzTensor _ (![Color.down, Color.down]) 0 e1
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj,
|
||
OverColor.mk_hom, Function.comp_apply, cons_val_zero, Fin.cases_zero, Fin.cases_succ] at h1
|
||
erw [h1]
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Functor.id_obj, OverColor.mk_hom,
|
||
Fin.cases_zero, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
|
||
erw [TensorSpecies.evalMap_tprod]
|
||
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.succAbove_zero, Functor.id_obj,
|
||
OverColor.mk_hom, Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons,
|
||
Fin.cases_zero, Fin.zero_succAbove, Fin.cases_succ, _root_.map_smul, smul_eq_mul]
|
||
erw [complexLorentzTensor.castFin0ToField_tprod]
|
||
simp only [Fin.isValue, mul_one]
|
||
change (Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.1)) e1 *
|
||
(Lorentz.complexCoBasisFin4.repr (Lorentz.complexCoBasisFin4 i.2)) e2 = _
|
||
simp only [Basis.repr_self]
|
||
rw [Finsupp.single_apply, Finsupp.single_apply]
|
||
rw [@ite_zero_mul_ite_zero]
|
||
simp only [mul_one]
|
||
congr
|
||
simp_all only [Fin.isValue, Fin.succAbove_zero, Fin.zero_succAbove, eq_iff_iff]
|
||
obtain ⟨fst, snd⟩ := i
|
||
simp_all only [Fin.isValue, Prod.mk.injEq]
|
||
|
||
lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
|
||
coCoBasis (0, 0) - coCoBasis (1, 1) - coCoBasis (2, 2) - coCoBasis (3, 3) := by
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Functor.id_obj, Fin.isValue]
|
||
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
|
||
simp only [Fin.isValue, map_sub]
|
||
congr 1
|
||
congr 1
|
||
congr 1
|
||
all_goals
|
||
erw [pairIsoSep_tmul, coCoBasis]
|
||
simp only [Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
|
||
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||
rfl
|
||
|
||
/-- The covariant Lorentz metric is symmetric. -/
|
||
lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ := by
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, perm_tensor]
|
||
rw [coMetric_expand]
|
||
simp only [TensorSpecies.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
|
||
map_sub]
|
||
simp only [coCoBasis, Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
|
||
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||
congr 1
|
||
congr 1
|
||
congr 1
|
||
all_goals
|
||
erw [OverColor.lift.map_tprod]
|
||
congr 1
|
||
funext i
|
||
match i with
|
||
| (0 : Fin 2) => rfl
|
||
| (1 : Fin 2) => rfl
|
||
|
||
lemma coMetric_0_0_field : {Lorentz.coMetric | 0 0}ᵀ.field = 1 := by
|
||
rw [field, eval_tensor, eval_tensor, coMetric_expand]
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
|
||
Function.comp_apply, Fin.succ_zero_eq_one, cons_val_one, head_cons, Fin.ofNat'_zero,
|
||
cons_val_zero, Functor.id_obj, OverColor.mk_hom, map_sub]
|
||
rw [coCoBasis_eval, coCoBasis_eval, coCoBasis_eval, coCoBasis_eval]
|
||
simp only [Fin.isValue, Prod.mk_zero_zero, ↓reduceIte, Prod.mk_one_one, one_ne_zero, sub_zero,
|
||
Prod.mk_eq_zero, Fin.reduceEq, and_self]
|
||
|
||
set_option maxRecDepth 20000 in
|
||
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
||
{(T1 | μ ν ⊗ T2 | μ ν) = (T2 | μ ν ⊗ T1 | μ ν)}ᵀ := by
|
||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_comm _ _ _ _)))]
|
||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||
rw [perm_tensor_eq (perm_contr _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rw [(contr_tensor_eq (contr_swap _ _))]
|
||
rw [perm_contr]
|
||
rw [perm_tensor_eq (contr_swap _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rfl
|
||
· apply OverColor.Hom.ext
|
||
rfl
|
||
· apply OverColor.Hom.ext
|
||
ext x
|
||
exact Fin.elim0 x
|
||
|
||
lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
{T2 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V} :
|
||
{(T1 | μ ν ⊗ T2 | μ ν) = (T2 | μ ν ⊗ T1 | μ ν)}ᵀ := by
|
||
rw [perm_tensor_eq contr_rank_2_symm]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
apply OverColor.Hom.ext
|
||
ext x
|
||
exact Fin.elim0 x
|
||
|
||
set_option maxRecDepth 20000 in
|
||
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
|
||
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
{S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
|
||
{A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
|
||
have h1 {M : Type} [AddCommGroup M] [Module ℂ M] {x : M} (h : x = - x) : x = 0 := by
|
||
rw [eq_neg_iff_add_eq_zero, ← two_smul ℂ x] at h
|
||
simpa using h
|
||
refine h1 ?_
|
||
rw [← neg_tensor]
|
||
rw [neg_perm] at hA
|
||
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
|
||
nth_rewrite 1 [(contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_snd hs)))]
|
||
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
|
||
rw [contr_tensor_eq (neg_contr _)]
|
||
rw [neg_contr]
|
||
rw [neg_tensor]
|
||
apply congrArg
|
||
rw [contr_tensor_eq (contr_tensor_eq (prod_perm_left _ _ _ _))]
|
||
rw [contr_tensor_eq (perm_contr _ _)]
|
||
rw [perm_contr]
|
||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
|
||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||
rw [perm_tensor_eq (perm_contr _ _)]
|
||
rw [perm_perm]
|
||
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rfl
|
||
· rfl
|
||
|
||
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
|
||
{S | μ ν ⊗ A | μ ν}ᵀ.tensor = 0 := by
|
||
rw [contr_rank_2_symm', perm_tensor, antiSymm_contr_symm hA hs]
|
||
rfl
|
||
|
||
end Fermion
|
||
|
||
end
|