PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/StaticWickTheorem.lean
2025-01-30 12:45:00 +00:00

98 lines
3.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.StaticContract
import HepLean.PerturbationTheory.WicksTheorem
import HepLean.Meta.Remark.Basic
/-!
# Static Wick's theorem
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open CrAnAlgebra
open HepLean.List
open WickContraction
open FieldStatistic
namespace FieldOpAlgebra
lemma static_wick_theorem_nil : ofFieldOpList [] = ∑ (φsΛ : WickContraction [].length),
φsΛ.sign (𝓕 := 𝓕) • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) := by
simp only [ofFieldOpList, ofStateList_nil, map_one, List.length_nil]
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
simp [sign, empty, staticContract]
theorem static_wick_theorem : (φs : List 𝓕.States) →
ofFieldOpList φs = ∑ (φsΛ : WickContraction φs.length),
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
| [] => static_wick_theorem_nil
| φ :: φs => by
rw [ofFieldOpList_cons]
rw [static_wick_theorem φs]
rw [show (φ :: φs) = φs.insertIdx (⟨0, Nat.zero_lt_succ φs.length⟩ : Fin φs.length.succ) φ
from rfl]
conv_rhs => rw [insertLift_sum ]
rw [Finset.mul_sum]
apply Finset.sum_congr rfl
intro c _
trans (sign φs c • ↑c.staticContract * (ofFieldOp φ * normalOrder (ofFieldOpList [c]ᵘᶜ)))
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center _)
(c.staticContract).2 c.sign )
conv_rhs => rw [← mul_assoc, ← ht]
simp [mul_assoc]
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum]
rw [Finset.mul_sum]
rw [uncontractedStatesEquiv_list_sum]
refine Finset.sum_congr rfl (fun n _ => ?_)
match n with
| none =>
simp [uncontractedStatesEquiv, contractStateAtIndex]
erw [sign_insert_none_zero]
rfl
| some n =>
simp
rw [normalOrder_uncontracted_some]
simp [← mul_assoc]
rw [← smul_mul_assoc]
conv_rhs => rw [← smul_mul_assoc]
congr 1
rw [staticConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
swap
· simp
rw [smul_smul]
by_cases hn : GradingCompliant φs c ∧ (𝓕|>ₛφ) = (𝓕|>ₛ φs[n.1])
· congr 1
swap
· have h1 := c.staticContract.2
rw [@Subalgebra.mem_center_iff] at h1
rw [h1]
erw [sign_insert_some]
rw [mul_assoc, mul_comm c.sign, ← mul_assoc]
rw [signInsertSome_mul_filter_contracted_of_not_lt]
simp
simp
exact hn
· simp at hn
by_cases h0 : ¬ GradingCompliant φs c
· rw [staticContract_of_not_gradingCompliant]
simp
exact h0
· simp_all
have h1 : contractStateAtIndex φ [c]ᵘᶜ ((uncontractedStatesEquiv φs c) (some n)) = 0 := by
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin, smul_eq_zero]
right
simp [uncontractedListGet]
rw [superCommute_anPart_ofState_diff_grade_zero]
exact hn
rw [h1]
simp
end FieldOpAlgebra
end FieldSpecification