PhysLean/HepLean/SpaceTime/LorentzVector/Complex/Unit.lean
2024-10-24 15:52:56 +00:00

198 lines
9.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Complex.Two
import HepLean.SpaceTime.LorentzVector.Complex.Contraction
/-!
# Unit for complex Lorentz vectors
-/
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open SpaceTime
open CategoryTheory.MonoidalCategory
namespace Lorentz
/-- The contra-co unit for complex lorentz vectors. Usually denoted `δⁱᵢ`. -/
def contrCoUnitVal : (complexContr ⊗ complexCo).V :=
contrCoToMatrix.symm 1
/-- Expansion of `contrCoUnitVal` into basis. -/
lemma contrCoUnitVal_expand_tmul : contrCoUnitVal =
complexContrBasis (Sum.inl 0) ⊗ₜ[] complexCoBasis (Sum.inl 0)
+ complexContrBasis (Sum.inr 0) ⊗ₜ[] complexCoBasis (Sum.inr 0)
+ complexContrBasis (Sum.inr 1) ⊗ₜ[] complexCoBasis (Sum.inr 1)
+ complexContrBasis (Sum.inr 2) ⊗ₜ[] complexCoBasis (Sum.inr 2) := by
simp only [Action.instMonoidalCategory_tensorObj_V, contrCoUnitVal, Fin.isValue]
erw [contrCoToMatrix_symm_expand_tmul]
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq, not_false_eq_true, one_apply_ne,
zero_smul, add_zero, one_apply_eq, one_smul, zero_add, Sum.inr.injEq, zero_ne_one, Fin.reduceEq,
one_ne_zero]
rfl
/-- The contra-co unit for complex lorentz vectors as a morphism
`𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ complexCo`, manifesting the invaraince under
the `SL(2, )` action. -/
def contrCoUnit : 𝟙_ (Rep SL(2,)) ⟶ complexContr ⊗ complexCo where
hom := {
toFun := fun a =>
let a' : := a
a' • contrCoUnitVal,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
Function.comp_apply]
let x' : := x
change x' • contrCoUnitVal =
(TensorProduct.map (complexContr.ρ M) (complexCo.ρ M)) (x' • contrCoUnitVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, contrCoUnitVal]
erw [contrCoToMatrix_ρ_symm]
apply congrArg
simp
lemma contrCoUnit_apply_one : contrCoUnit.hom (1 : ) = contrCoUnitVal := by
change contrCoUnit.hom.toFun (1 : ) = contrCoUnitVal
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
contrCoUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
/-- The co-contra unit for complex lorentz vectors. Usually denoted `δᵢⁱ`. -/
def coContrUnitVal : (complexCo ⊗ complexContr).V :=
coContrToMatrix.symm 1
/-- Expansion of `coContrUnitVal` into basis. -/
lemma coContrUnitVal_expand_tmul : coContrUnitVal =
complexCoBasis (Sum.inl 0) ⊗ₜ[] complexContrBasis (Sum.inl 0)
+ complexCoBasis (Sum.inr 0) ⊗ₜ[] complexContrBasis (Sum.inr 0)
+ complexCoBasis (Sum.inr 1) ⊗ₜ[] complexContrBasis (Sum.inr 1)
+ complexCoBasis (Sum.inr 2) ⊗ₜ[] complexContrBasis (Sum.inr 2) := by
simp only [Action.instMonoidalCategory_tensorObj_V, coContrUnitVal, Fin.isValue]
erw [coContrToMatrix_symm_expand_tmul]
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq, not_false_eq_true, one_apply_ne,
zero_smul, add_zero, one_apply_eq, one_smul, zero_add, Sum.inr.injEq, zero_ne_one, Fin.reduceEq,
one_ne_zero]
rfl
/-- The co-contra unit for complex lorentz vectors as a morphism
`𝟙_ (Rep SL(2,)) ⟶ complexCo ⊗ complexContr`, manifesting the invaraince under
the `SL(2, )` action. -/
def coContrUnit : 𝟙_ (Rep SL(2,)) ⟶ complexCo ⊗ complexContr where
hom := {
toFun := fun a =>
let a' : := a
a' • coContrUnitVal,
map_add' := fun x y => by
simp only [add_smul],
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
Function.comp_apply]
let x' : := x
change x' • coContrUnitVal =
(TensorProduct.map (complexCo.ρ M) (complexContr.ρ M)) (x' • coContrUnitVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, coContrUnitVal]
erw [coContrToMatrix_ρ_symm]
apply congrArg
symm
refine transpose_eq_one.mp ?h.h.h.a
simp
lemma coContrUnit_apply_one : coContrUnit.hom (1 : ) = coContrUnitVal := by
change coContrUnit.hom.toFun (1 : ) = coContrUnitVal
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
coContrUnit, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
/-!
## Contraction of the units
-/
/-- Contraction on the right with `contrCoUnit` does nothing. -/
lemma contr_contrCoUnit (x : complexCo) :
(λ_ complexCo).hom.hom
((coContrContraction ▷ complexCo).hom
((α_ _ _ complexCo).inv.hom
(x ⊗ₜ[] contrCoUnit.hom (1 : )))) = x := by
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span complexCoBasis x)
subst hc
rw [contrCoUnit_apply_one, contrCoUnitVal_expand_tmul]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_leftUnitor_hom_hom, Action.instMonoidalCategory_whiskerRight_hom,
Action.instMonoidalCategory_associator_inv_hom, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, Fin.sum_univ_three, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
_root_.map_smul]
have h1' (x y : CoeSort.coe complexCo) (z : CoeSort.coe complexContr) :
(α_ complexCo.V complexContr.V complexCo.V).inv (x ⊗ₜ[] z ⊗ₜ[] y) = (x ⊗ₜ[] z) ⊗ₜ[] y := rfl
repeat rw [h1']
have h1'' ( y : CoeSort.coe complexCo) (z : CoeSort.coe complexCo ⊗[] CoeSort.coe complexContr) :
(coContrContraction.hom ▷ complexCo.V) (z ⊗ₜ[] y) = (coContrContraction.hom z) ⊗ₜ[] y := rfl
repeat rw (config := { transparency := .instances }) [h1'']
repeat rw [coContrContraction_basis']
simp only [Fin.isValue, leftUnitor, ModuleCat.MonoidalCategory.leftUnitor, ModuleCat.of_coe,
CategoryTheory.Iso.trans_hom, LinearEquiv.toModuleIso_hom, ModuleCat.ofSelfIso_hom,
CategoryTheory.Category.comp_id, Action.instMonoidalCategory_tensorUnit_V, ↓reduceIte,
reduceCtorEq, zero_tmul, map_zero, smul_zero, add_zero, Sum.inr.injEq, one_ne_zero,
Fin.reduceEq, zero_add, zero_ne_one]
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul, TensorProduct.lid_tmul,
TensorProduct.lid_tmul]
simp only [Fin.isValue, one_smul]
repeat rw [add_assoc]
/-- Contraction on the right with `coContrUnit`. -/
lemma contr_coContrUnit (x : complexContr) :
(λ_ complexContr).hom.hom
((contrCoContraction ▷ complexContr).hom
((α_ _ _ complexContr).inv.hom
(x ⊗ₜ[] coContrUnit.hom (1 : )))) = x := by
obtain ⟨c, hc⟩ := (mem_span_range_iff_exists_fun ).mp (Basis.mem_span complexContrBasis x)
subst hc
rw [coContrUnit_apply_one, coContrUnitVal_expand_tmul]
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_leftUnitor_hom_hom, Action.instMonoidalCategory_whiskerRight_hom,
Action.instMonoidalCategory_associator_inv_hom, CategoryTheory.Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, Fin.sum_univ_three, tmul_add, add_tmul, smul_tmul, tmul_smul, map_add,
_root_.map_smul]
have h1' (x y : CoeSort.coe complexContr) (z : CoeSort.coe complexCo) :
(α_ complexContr.V complexCo.V complexContr.V).inv (x ⊗ₜ[] z ⊗ₜ[] y) = (x ⊗ₜ[] z) ⊗ₜ[] y := rfl
repeat rw [h1']
have h1'' ( y : CoeSort.coe complexContr) (z : CoeSort.coe complexContr ⊗[] CoeSort.coe complexCo) :
(contrCoContraction.hom ▷ complexContr.V) (z ⊗ₜ[] y) = (contrCoContraction.hom z) ⊗ₜ[] y := rfl
repeat rw (config := { transparency := .instances }) [h1'']
repeat rw [contrCoContraction_basis']
simp only [Fin.isValue, Action.instMonoidalCategory_tensorUnit_V, ↓reduceIte, reduceCtorEq,
zero_tmul, map_zero, smul_zero, add_zero, Sum.inr.injEq, one_ne_zero, Fin.reduceEq, zero_add,
zero_ne_one]
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul, TensorProduct.lid_tmul,
TensorProduct.lid_tmul]
simp only [Fin.isValue, one_smul]
repeat rw [add_assoc]
end Lorentz
end