770 lines
41 KiB
Text
770 lines
41 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Elab
|
||
import HepLean.Tensors.ComplexLorentz.Basic
|
||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||
import HepLean.Tensors.ComplexLorentz.Basis
|
||
import LLMLean
|
||
/-!
|
||
|
||
## Lemmas related to complex Lorentz tensors.
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace Fermion
|
||
|
||
set_option maxRecDepth 20000 in
|
||
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
|
||
{T1 | μ ν ⊗ T2 | μ ν = T2 | μ ν ⊗ T1 | μ ν}ᵀ := by
|
||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_comm _ _ _ _)))]
|
||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||
rw [perm_tensor_eq (perm_contr _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rw [(contr_tensor_eq (contr_swap _ _))]
|
||
rw [perm_contr]
|
||
rw [perm_tensor_eq (contr_swap _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rfl
|
||
· rfl
|
||
· apply OverColor.Hom.ext
|
||
ext x
|
||
exact Fin.elim0 x
|
||
|
||
lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
{T2 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V} :
|
||
{T1 | μ ν ⊗ T2 | μ ν = T2 | μ ν ⊗ T1 | μ ν}ᵀ := by
|
||
rw [perm_tensor_eq contr_rank_2_symm]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
apply OverColor.Hom.ext
|
||
ext x
|
||
exact Fin.elim0 x
|
||
|
||
set_option maxRecDepth 20000 in
|
||
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
|
||
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
{S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
|
||
{A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
|
||
have h1 {M : Type} [AddCommGroup M] [Module ℂ M] {x : M} (h : x = - x) : x = 0 := by
|
||
rw [eq_neg_iff_add_eq_zero, ← two_smul ℂ x] at h
|
||
simpa using h
|
||
refine h1 ?_
|
||
rw [← neg_tensor]
|
||
rw [neg_perm] at hA
|
||
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
|
||
nth_rewrite 1 [(contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_snd hs)))]
|
||
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
|
||
rw [contr_tensor_eq (neg_contr _)]
|
||
rw [neg_contr]
|
||
rw [neg_tensor]
|
||
apply congrArg
|
||
rw [contr_tensor_eq (contr_tensor_eq (prod_perm_left _ _ _ _))]
|
||
rw [contr_tensor_eq (perm_contr _ _)]
|
||
rw [perm_contr]
|
||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
|
||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||
rw [perm_tensor_eq (perm_contr _ _)]
|
||
rw [perm_perm]
|
||
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
|
||
rw [perm_perm]
|
||
rw [perm_eq_id]
|
||
· rfl
|
||
· rfl
|
||
|
||
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
|
||
{S | μ ν ⊗ A | μ ν}ᵀ.tensor = 0 := by
|
||
rw [contr_rank_2_symm', perm_tensor, antiSymm_contr_symm hA hs]
|
||
rfl
|
||
|
||
lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||
(hA : {A | μ ν = - (A | ν μ)}ᵀ) :
|
||
{A | μ ν + A | ν μ}ᵀ.tensor = 0 := by
|
||
rw [← TensorTree.add_neg (twoNodeE complexLorentzTensor Color.up Color.up A)]
|
||
apply TensorTree.add_tensor_eq_snd
|
||
rw [neg_tensor_eq hA, neg_tensor_eq (neg_perm _ _), neg_neg]
|
||
|
||
/-!
|
||
|
||
## The contraction of Pauli matrices with Pauli matrices
|
||
|
||
And related results.
|
||
|
||
-/
|
||
open complexLorentzTensor
|
||
|
||
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm
|
||
|
||
lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
|
||
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||
- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||
- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||
rw [prod_tensor_eq_fst (leftMetric_expand_tree)]
|
||
rw [prod_tensor_eq_snd (rightMetric_expand_tree)]
|
||
rw [prod_add_both]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
|
||
rw [← add_assoc]
|
||
simp only [add_tensor, smul_tensor, tensorNode_tensor]
|
||
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
|
||
congr 1
|
||
congr 1
|
||
congr 1
|
||
all_goals
|
||
congr
|
||
funext x
|
||
fin_cases x <;> rfl
|
||
|
||
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||
Fin.succAbove 0 ∘ Fin.succAbove 1)
|
||
|
||
abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
|
||
|
||
lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(t : TensorTree complexLorentzTensor c) :
|
||
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||
(((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||
(((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||
(((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||
((TensorTree.smul (-I) ((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||
((TensorTree.smul I ((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||
((t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
|
||
(TensorTree.smul (-1) (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR]
|
||
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
|
||
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
|
||
rw [prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
|
||
/- Moving smuls. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| prod_smul _ _ _]
|
||
rfl
|
||
|
||
|
||
lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
|
||
(contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor =
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
|
||
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
|
||
((TensorTree.smul I (contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
|
||
((contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
|
||
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
|
||
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
|
||
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
|
||
/- Moving contr over add. -/
|
||
rw [contr_add]
|
||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
/- Moving contr over smul. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
contr_smul _ _]
|
||
|
||
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i))
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
|
||
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i))
|
||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
|
||
(basisVector c' (b' 0 0 0))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
|
||
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
|
||
(TensorTree.smul (-1) (contr i j h ((tensorNode
|
||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||
rw [contr_pauliMatrix_basis_tree_expand]
|
||
/- Product of basis vectors . -/
|
||
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||
<| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
|
||
<| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
|
||
<| prod_basisVector_tree _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
|
||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||
rfl
|
||
|
||
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i))
|
||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
|
||
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
|
||
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i))
|
||
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
|
||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor))).tensor = (((
|
||
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add
|
||
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add
|
||
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
|
||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
||
/- Contracting basis vectors. -/
|
||
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||
<| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
|
||
<| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
|
||
smul_tensor_eq <| contr_basisVector_tree _]
|
||
|
||
lemma pauliMatrix_contr_down_0 :
|
||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [one_smul, zero_smul, smul_zero, add_zero]
|
||
congr 1
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_0_tree :
|
||
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= (TensorTree.add (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)))
|
||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
|
||
exact pauliMatrix_contr_down_0
|
||
|
||
lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl
|
||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_1_tree : (contr 0 1 rfl
|
||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
|
||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
|
||
exact pauliMatrix_contr_down_1
|
||
|
||
lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl
|
||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_2_tree : (contr 0 1 rfl
|
||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor =
|
||
(TensorTree.add
|
||
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
|
||
(smul I (tensorNode (basisVector
|
||
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
|
||
exact pauliMatrix_contr_down_2
|
||
|
||
lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl
|
||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor
|
||
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||
+ (- 1 : ℂ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_down_3_tree : (contr 0 1 rfl
|
||
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor =
|
||
(TensorTree.add
|
||
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
|
||
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
|
||
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
|
||
exact pauliMatrix_contr_down_3
|
||
|
||
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
|
||
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
|
||
Fin.succAbove 0 ∘ Fin.succAbove 1)
|
||
![Color.up, Color.upL, Color.upR] ∘
|
||
⇑finSumFinEquiv.symm) ∘
|
||
Fin.succAbove 0 ∘ Fin.succAbove 2)
|
||
|
||
lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 1
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor =
|
||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
|
||
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor =
|
||
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
|
||
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor =
|
||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
|
||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap
|
||
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl
|
||
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))).prod
|
||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||
PauliMatrix.asConsTensor)))).tensor =
|
||
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||
+ (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
|
||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
|
||
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
|
||
/- Simplifying. -/
|
||
simp only [smul_tensor, add_tensor, tensorNode_tensor]
|
||
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
|
||
congr 1
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
· congr 2
|
||
funext k
|
||
fin_cases k <;> rfl
|
||
|
||
lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
|
||
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
|
||
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
|
||
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
|
||
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
|
||
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
|
||
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
|
||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
|
||
/- Moving the prod through additions. -/
|
||
rw [contr_tensor_eq <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
/- Moving the prod through smuls. -/
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
|
||
<| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
|
||
<| smul_prod _ _ _]
|
||
/- Moving contraction through addition. -/
|
||
rw [contr_add]
|
||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
/- Moving contraction through smul. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
|
||
/- Replacing the contractions. -/
|
||
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_2_tree]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| pauliMatrix_contr_down_3_tree]
|
||
/- Simplifying -/
|
||
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
|
||
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
|
||
_root_.neg_neg, mul_one]
|
||
rfl
|
||
|
||
lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||
= (TensorTree.add (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||
TensorTree.add (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
|
||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
|
||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
|
||
TensorTree.add (TensorTree.smul I (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
|
||
TensorTree.add (TensorTree.smul (-I) (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
|
||
TensorTree.add (TensorTree.smul (-1) (tensorNode
|
||
(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
|
||
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
|
||
rw [pauliMatrix_lower]
|
||
simp only [Nat.reduceAdd, Fin.isValue, add_tensor,
|
||
tensorNode_tensor, smul_tensor, neg_smul, one_smul]
|
||
rfl
|
||
|
||
lemma pauliMatrix_contract_pauliMatrix_aux :
|
||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
|
||
= ((tensorNode
|
||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
|
||
((tensorNode
|
||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
|
||
((TensorTree.smul (-1) (tensorNode
|
||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||
((TensorTree.smul (-1) (tensorNode
|
||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||
((TensorTree.smul I (tensorNode
|
||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
|
||
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
|
||
((TensorTree.smul (-I) (tensorNode
|
||
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
|
||
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
|
||
((TensorTree.smul (-1) (tensorNode
|
||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
|
||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
|
||
(tensorNode
|
||
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
|
||
(-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
|
||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree]
|
||
/- Moving the prod through additions. -/
|
||
rw [contr_tensor_eq <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
|
||
/- Moving the prod through smuls. -/
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
|
||
/- Moving contraction through addition. -/
|
||
rw [contr_add]
|
||
rw [add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
|
||
/- Moving contraction through smul. -/
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
|
||
/- Replacing the contractions. -/
|
||
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_1_1]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_0_1]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_1_0]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
|
||
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_1_1]
|
||
|
||
lemma pauliMatrix_contract_pauliMatrix :
|
||
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
|
||
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
|
||
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
|
||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
|
||
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
|
||
rw [pauliMatrix_contract_pauliMatrix_aux]
|
||
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
|
||
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
|
||
neg_mul, _root_.neg_neg]
|
||
ring_nf
|
||
rw [Complex.I_sq]
|
||
simp only [ neg_smul, one_smul, _root_.neg_neg]
|
||
abel
|
||
|
||
end Fermion
|
||
|
||
end
|