PhysLean/HepLean/Tensors/ComplexLorentz/Lemmas.lean
2024-10-24 06:10:08 +00:00

770 lines
41 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
import HepLean.Tensors.ComplexLorentz.Basis
import LLMLean
/-!
## Lemmas related to complex Lorentz tensors.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
set_option maxRecDepth 20000 in
lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{T2 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V} :
{T1 | μ ν ⊗ T2 | μ ν = T2 | μ ν ⊗ T1 | μ ν}ᵀ := by
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_comm _ _ _ _)))]
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
rw [perm_tensor_eq (perm_contr _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rw [(contr_tensor_eq (contr_swap _ _))]
rw [perm_contr]
rw [perm_tensor_eq (contr_swap _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rfl
· rfl
· apply OverColor.Hom.ext
ext x
exact Fin.elim0 x
lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
{T2 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V} :
{T1 | μ ν ⊗ T2 | μ ν = T2 | μ ν ⊗ T1 | μ ν}ᵀ := by
rw [perm_tensor_eq contr_rank_2_symm]
rw [perm_perm]
rw [perm_eq_id]
apply OverColor.Hom.ext
ext x
exact Fin.elim0 x
set_option maxRecDepth 20000 in
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
{S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
{A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
have h1 {M : Type} [AddCommGroup M] [Module M] {x : M} (h : x = - x) : x = 0 := by
rw [eq_neg_iff_add_eq_zero, ← two_smul x] at h
simpa using h
refine h1 ?_
rw [← neg_tensor]
rw [neg_perm] at hA
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
nth_rewrite 1 [(contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_snd hs)))]
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
rw [contr_tensor_eq (neg_contr _)]
rw [neg_contr]
rw [neg_tensor]
apply congrArg
rw [contr_tensor_eq (contr_tensor_eq (prod_perm_left _ _ _ _))]
rw [contr_tensor_eq (perm_contr _ _)]
rw [perm_contr]
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
rw [perm_tensor_eq (perm_contr _ _)]
rw [perm_perm]
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
rw [perm_perm]
rw [perm_eq_id]
· rfl
· rfl
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
(hA : {A | μ ν = - (A | ν μ)}ᵀ) (hs : {S | μ ν = S | ν μ}ᵀ) :
{S | μ ν ⊗ A | μ ν}ᵀ.tensor = 0 := by
rw [contr_rank_2_symm', perm_tensor, antiSymm_contr_symm hA hs]
rfl
lemma antiSymm_add_self {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
(hA : {A | μ ν = - (A | ν μ)}ᵀ) :
{A | μ ν + A | ν μ}ᵀ.tensor = 0 := by
rw [← TensorTree.add_neg (twoNodeE complexLorentzTensor Color.up Color.up A)]
apply TensorTree.add_tensor_eq_snd
rw [neg_tensor_eq hA, neg_tensor_eq (neg_perm _ _), neg_neg]
/-!
## The contraction of Pauli matrices with Pauli matrices
And related results.
-/
open complexLorentzTensor
def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm
lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor
= basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [prod_tensor_eq_fst (leftMetric_expand_tree)]
rw [prod_tensor_eq_snd (rightMetric_expand_tree)]
rw [prod_add_both]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)]
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _]
rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _]
rw [← add_assoc]
simp only [add_tensor, smul_tensor, tensorNode_tensor]
change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
+- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)
congr 1
congr 1
congr 1
all_goals
congr
funext x
fin_cases x <;> rfl
def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1)
abbrev pauliMatrixContrMap {n : } (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm)
lemma prod_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
(((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I ((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add
(TensorTree.smul (-1) (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by
rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree]
rw [prod_add _ _ _]
rw [add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _]
/- Moving smuls. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd
<| add_tensor_eq_snd <| prod_smul _ _ _]
rfl
lemma contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) :
(contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor =
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add
((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add
((TensorTree.smul I (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add
((contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add
(TensorTree.smul (-1) (contr i j h (t.prod (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by
rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _]
/- Moving contr over add. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contr over smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
contr_smul _ _]
lemma basis_contr_pauliMatrix_basis_tree_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm
let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode
(basisVector c' (b' 0 0 0))))).add
((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add
((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add
((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) (contr i j h ((tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [contr_pauliMatrix_basis_tree_expand]
/- Product of basis vectors . -/
rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq
<| prod_basisVector_tree _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq
<| contr_tensor_eq <| prod_basisVector_tree _ _]
rfl
lemma basis_contr_pauliMatrix_basis_tree_expand {n : } {c : Fin n → complexLorentzTensor.C}
(i : Fin (n + 3)) (j : Fin (n +2))
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
∘ Fin.succAbove i ∘ Fin.succAbove j
let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) →
Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i))
let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k))
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor))).tensor = (((
TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add
(((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
rw [basis_contr_pauliMatrix_basis_tree_expand']
/- Contracting basis vectors. -/
rw [add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq
<| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <|
smul_tensor_eq <| contr_basisVector_tree _]
lemma pauliMatrix_contr_down_0 :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [one_smul, zero_smul, smul_zero, add_zero]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_0_tree :
(contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by
exact pauliMatrix_contr_down_0
lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_1_tree : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by
exact pauliMatrix_contr_down_1
lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_2_tree : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(TensorTree.add
(smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))))
(smul I (tensorNode (basisVector
pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by
exact pauliMatrix_contr_down_2
lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ (- 1 : ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_down_3_tree : (contr 0 1 rfl
(((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(TensorTree.add
((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))))
(smul (-1) (tensorNode (basisVector pauliMatrixLowerMap
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
exact pauliMatrix_contr_down_3
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1)
![Color.up, Color.upL, Color.upR] ∘
⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 2)
lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
fin_cases k <;> rfl
· congr 1
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl
(((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))).prod
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
PauliMatrix.asConsTensor)))).tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
fin_cases k <;> rfl
· congr 2
funext k
fin_cases k <;> rfl
lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
- basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)
+ I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)
- I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)
- basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)
+ basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst
<| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd
<| smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _]
/- Replacing the contractions. -/
rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_2_tree]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| pauliMatrix_contr_down_3_tree]
/- Simplifying -/
simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul]
simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul,
_root_.neg_neg, mul_one]
rfl
lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
= (TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul I (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (TensorTree.smul (-I) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (TensorTree.smul (-1) (tensorNode
(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <|
(tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by
rw [pauliMatrix_lower]
simp only [Nat.reduceAdd, Fin.isValue, add_tensor,
tensorNode_tensor, smul_tensor, neg_smul, one_smul]
rfl
lemma pauliMatrix_contract_pauliMatrix_aux :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
= ((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul I (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-I) (tensorNode
((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) +
I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add
((TensorTree.smul (-1) (tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add
(tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree]
/- Moving the prod through additions. -/
rw [contr_tensor_eq <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _]
/- Moving the prod through smuls. -/
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _]
/- Moving contraction through smul. -/
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _]
/- Replacing the contractions. -/
rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_1_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_0_1]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_1_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0]
rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_1_1]
lemma pauliMatrix_contract_pauliMatrix :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by
rw [pauliMatrix_contract_pauliMatrix_aux]
simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul,
one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul,
neg_mul, _root_.neg_neg]
ring_nf
rw [Complex.I_sq]
simp only [ neg_smul, one_smul, _root_.neg_neg]
abel
end Fermion
end