PhysLean/HepLean/AnomalyCancellation/SMNu/Basic.lean
2024-04-18 08:40:46 -04:00

358 lines
10 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Tactic.FinCases
import Mathlib.Algebra.Module.Basic
import Mathlib.Tactic.Ring
import Mathlib.Algebra.GroupWithZero.Units.Lemmas
import HepLean.AnomalyCancellation.Basic
import Mathlib.Algebra.BigOperators.Fin
import Mathlib.Logic.Equiv.Fin
/-!
# Anomaly cancellation conditions for n family SM.
-/
universe v u
open Nat
open BigOperators
/-- The vector space of charges corresponding to the SM fermions with RHN. -/
@[simps!]
def SMνCharges (n : ) : ACCSystemCharges := ACCSystemChargesMk (6 * n)
/-- The vector spaces of charges of one species of fermions in the SM. -/
@[simps!]
def SMνSpecies (n : ) : ACCSystemCharges := ACCSystemChargesMk n
namespace SMνCharges
variable {n : }
/-- An equivalence between `(SMνCharges n).charges` and `(Fin 6 → Fin n → )`
splitting the charges into species.-/
@[simps!]
def toSpeciesEquiv : (SMνCharges n).charges ≃ (Fin 6 → Fin n → ) :=
((Equiv.curry _ _ _).symm.trans ((@finProdFinEquiv 6 n).arrowCongr (Equiv.refl ))).symm
/-- Given an `i ∈ Fin 6`, the projection of charges onto a given species. -/
@[simps!]
def toSpecies (i : Fin 6) : (SMνCharges n).charges →ₗ[] (SMνSpecies n).charges where
toFun S := toSpeciesEquiv S i
map_add' _ _ := by aesop
map_smul' _ _ := by aesop
lemma charges_eq_toSpecies_eq (S T : (SMνCharges n).charges) :
S = T ↔ ∀ i, toSpecies i S = toSpecies i T := by
apply Iff.intro
intro h
rw [h]
simp
intro h
apply toSpeciesEquiv.injective
funext i
exact h i
lemma toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6 → Fin n → ) ) :
(toSpecies i) (toSpeciesEquiv.symm f) = f i := by
change (toSpeciesEquiv ∘ toSpeciesEquiv.symm ) _ i = f i
simp
lemma toSpecies_one (S : (SMνCharges 1).charges) (j : Fin 6) :
toSpecies j S ⟨0, by simp⟩ = S j := by
match j with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
| 4 => rfl
| 5 => rfl
/-- The `Q` charges as a map `Fin n → `. -/
abbrev Q := @toSpecies n 0
/-- The `U` charges as a map `Fin n → `. -/
abbrev U := @toSpecies n 1
/-- The `D` charges as a map `Fin n → `. -/
abbrev D := @toSpecies n 2
/-- The `L` charges as a map `Fin n → `. -/
abbrev L := @toSpecies n 3
/-- The `E` charges as a map `Fin n → `. -/
abbrev E := @toSpecies n 4
/-- The `N` charges as a map `Fin n → `. -/
abbrev N := @toSpecies n 5
end SMνCharges
namespace SMνACCs
open SMνCharges
variable {n : }
/-- The gravitational anomaly equation. -/
@[simp]
def accGrav : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (6 * Q S i + 3 * U S i + 3 * D S i + 2 * L S i + E S i + N S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accGrav_decomp (S : (SMνCharges n).charges) :
accGrav S = 6 * ∑ i, Q S i + 3 * ∑ i, U S i + 3 * ∑ i, D S i + 2 * ∑ i, L S i + ∑ i, E S i +
∑ i, N S i := by
simp
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- Extensionality lemma for `accGrav`. -/
lemma accGrav_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accGrav S = accGrav T := by
rw [accGrav_decomp, accGrav_decomp]
repeat erw [hj]
/-- The `SU(2)` anomaly equation. -/
@[simp]
def accSU2 : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (3 * Q S i + L S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accSU2_decomp (S : (SMνCharges n).charges) :
accSU2 S = 3 * ∑ i, Q S i + ∑ i, L S i := by
simp
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- Extensionality lemma for `accSU2`. -/
lemma accSU2_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accSU2 S = accSU2 T := by
rw [accSU2_decomp, accSU2_decomp]
repeat erw [hj]
/-- The `SU(3)` anomaly equations. -/
@[simp]
def accSU3 : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (2 * Q S i + U S i + D S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [ Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accSU3_decomp (S : (SMνCharges n).charges) :
accSU3 S = 2 * ∑ i, Q S i + ∑ i, U S i + ∑ i, D S i := by
simp
repeat rw [Finset.sum_add_distrib]
repeat rw [← Finset.mul_sum]
/-- Extensionality lemma for `accSU3`. -/
lemma accSU3_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accSU3 S = accSU3 T := by
rw [accSU3_decomp, accSU3_decomp]
repeat rw [hj]
/-- The `Y²` anomaly equation. -/
@[simp]
def accYY : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (Q S i + 8 * U S i + 2 * D S i + 3 * L S i
+ 6 * E S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accYY_decomp (S : (SMνCharges n).charges) :
accYY S = ∑ i, Q S i + 8 * ∑ i, U S i + 2 * ∑ i, D S i + 3 * ∑ i, L S i + 6 * ∑ i, E S i := by
simp
repeat rw [Finset.sum_add_distrib]
repeat rw [← Finset.mul_sum]
/-- Extensionality lemma for `accYY`. -/
lemma accYY_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accYY S = accYY T := by
rw [accYY_decomp, accYY_decomp]
repeat rw [hj]
/-- The quadratic bilinear map. -/
@[simps!]
def quadBiLin : BiLinearSymm (SMνCharges n).charges where
toFun S := ∑ i, (Q S.1 i * Q S.2 i +
- 2 * (U S.1 i * U S.2 i) +
D S.1 i * D S.2 i +
(- 1) * (L S.1 i * L S.2 i) +
E S.1 i * E S.2 i)
map_smul₁' a S T := by
simp only
rw [Finset.mul_sum]
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
ring
map_add₁' S T R := by
simp only
rw [← Finset.sum_add_distrib]
apply Fintype.sum_congr
intro i
repeat erw [map_add]
simp
ring
swap' S T := by
simp
apply Fintype.sum_congr
intro i
ring
lemma quadBiLin_decomp (S T : (SMνCharges n).charges) :
quadBiLin (S, T) = ∑ i, Q S i * Q T i - 2 * ∑ i, U S i * U T i +
∑ i, D S i * D T i - ∑ i, L S i * L T i + ∑ i, E S i * E T i := by
erw [← quadBiLin.toFun_eq_coe]
rw [quadBiLin]
simp only
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
simp
ring
/-- The quadratic anomaly cancellation condition. -/
@[simp]
def accQuad : HomogeneousQuadratic (SMνCharges n).charges :=
(@quadBiLin n).toHomogeneousQuad
lemma accQuad_decomp (S : (SMνCharges n).charges) :
accQuad S = ∑ i, (Q S i)^2 - 2 * ∑ i, (U S i)^2 + ∑ i, (D S i)^2 - ∑ i, (L S i)^2
+ ∑ i, (E S i)^2 := by
erw [quadBiLin_decomp]
ring_nf
/-- Extensionality lemma for `accQuad`. -/
lemma accQuad_ext {S T : (SMνCharges n).charges}
(h : ∀ j, ∑ i, ((fun a => a^2) ∘ toSpecies j S) i =
∑ i, ((fun a => a^2) ∘ toSpecies j T) i) :
accQuad S = accQuad T := by
rw [accQuad_decomp, accQuad_decomp]
erw [h 0, h 1, h 2, h 3, h 4]
rfl
/-- The symmetric trilinear form used to define the cubic acc. -/
@[simps!]
def cubeTriLin : TriLinearSymm (SMνCharges n).charges where
toFun S := ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
+ 3 * ((U S.1 i) * (U S.2.1 i) * (U S.2.2 i))
+ 3 * ((D S.1 i) * (D S.2.1 i) * (D S.2.2 i))
+ 2 * ((L S.1 i) * (L S.2.1 i) * (L S.2.2 i))
+ ((E S.1 i) * (E S.2.1 i) * (E S.2.2 i))
+ ((N S.1 i) * (N S.2.1 i) * (N S.2.2 i)))
map_smul₁' a S T R := by
simp only
rw [Finset.mul_sum]
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
ring
map_add₁' S T R L := by
simp only
rw [← Finset.sum_add_distrib]
apply Fintype.sum_congr
intro i
repeat erw [map_add]
simp
ring
swap₁' S T L := by
simp
apply Fintype.sum_congr
intro i
ring
swap₂' S T L := by
simp
apply Fintype.sum_congr
intro i
ring
lemma cubeTriLin_decomp (S T R : (SMνCharges n).charges) :
cubeTriLin (S, T, R) = 6 * ∑ i, (Q S i * Q T i * Q R i) + 3 * ∑ i, (U S i * U T i * U R i) +
3 * ∑ i, (D S i * D T i * D R i) + 2 * ∑ i, (L S i * L T i * L R i) +
∑ i, (E S i * E T i * E R i) + ∑ i, (N S i * N T i * N R i) := by
erw [← cubeTriLin.toFun_eq_coe]
rw [cubeTriLin]
simp only
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- The cubic ACC. -/
@[simp]
def accCube : HomogeneousCubic (SMνCharges n).charges := cubeTriLin.toCubic
lemma accCube_decomp (S : (SMνCharges n).charges) :
accCube S = 6 * ∑ i, (Q S i)^3 + 3 * ∑ i, (U S i)^3 + 3 * ∑ i, (D S i)^3 + 2 * ∑ i, (L S i)^3 +
∑ i, (E S i)^3 + ∑ i, (N S i)^3 := by
erw [cubeTriLin_decomp]
ring_nf
/-- Extensionality lemma for `accCube`. -/
lemma accCube_ext {S T : (SMνCharges n).charges}
(h : ∀ j, ∑ i, ((fun a => a^3) ∘ toSpecies j S) i =
∑ i, ((fun a => a^3) ∘ toSpecies j T) i) :
accCube S = accCube T := by
rw [accCube_decomp]
have h1 : ∀ j, ∑ i, (toSpecies j S i) ^ 3 = ∑ i, (toSpecies j T i) ^ 3 := by
intro j
erw [h]
rfl
repeat rw [h1]
rw [accCube_decomp]
end SMνACCs