PhysLean/HepLean/SpaceTime/LorentzGroup/Rotations.lean
2024-06-25 07:06:32 -04:00

58 lines
2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Basic
import HepLean.GroupTheory.SO3.Basic
import Mathlib.Topology.Constructions
/-!
# Rotations
-/
noncomputable section
namespace spaceTime
namespace lorentzGroup
open GroupTheory
/-- Given a element of `SO(3)` the matrix corresponding to a space-time rotation. -/
@[simp]
def SO3ToMatrix (A : SO(3)) : Matrix (Fin 4) (Fin 4) :=
Matrix.reindex finSumFinEquiv finSumFinEquiv (Matrix.fromBlocks 1 0 0 A.1)
lemma SO3ToMatrix_PreservesηLin (A : SO(3)) : PreservesηLin $ SO3ToMatrix A := by
rw [PreservesηLin.iff_matrix]
simp only [η_block, Nat.reduceAdd, Matrix.reindex_apply, SO3ToMatrix, Matrix.transpose_submatrix,
Matrix.fromBlocks_transpose, Matrix.transpose_one, Matrix.transpose_zero,
Matrix.submatrix_mul_equiv, Matrix.fromBlocks_multiply, mul_one, Matrix.mul_zero, add_zero,
Matrix.zero_mul, Matrix.mul_one, neg_mul, one_mul, zero_add, Matrix.mul_neg, neg_zero, mul_neg,
neg_neg, Matrix.mul_eq_one_comm.mpr A.2.2, Matrix.fromBlocks_one, Matrix.submatrix_one_equiv]
lemma SO3ToMatrix_injective : Function.Injective SO3ToMatrix := by
intro A B h
erw [Equiv.apply_eq_iff_eq] at h
have h1 := congrArg Matrix.toBlocks₂₂ h
rw [Matrix.toBlocks_fromBlocks₂₂, Matrix.toBlocks_fromBlocks₂₂] at h1
apply Subtype.eq
exact h1
/-- Given a element of `SO(3)` the element of the Lorentz group corresponding to a
space-time rotation. -/
def SO3ToLorentz : SO(3) →* 𝓛 where
toFun A := ⟨SO3ToMatrix A, SO3ToMatrix_PreservesηLin A⟩
map_one' := by
apply Subtype.eq
simp only [SO3ToMatrix, Nat.reduceAdd, Matrix.reindex_apply, lorentzGroupIsGroup_one_coe]
erw [Matrix.fromBlocks_one]
exact Matrix.submatrix_one_equiv finSumFinEquiv.symm
map_mul' A B := by
apply Subtype.eq
simp [Matrix.fromBlocks_multiply]
end lorentzGroup
end spaceTime
end