181 lines
6.6 KiB
Text
181 lines
6.6 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.Basic
|
||
import HepLean.StandardModel.Basic
|
||
import HepLean.StandardModel.HiggsBoson.TargetSpace
|
||
import Mathlib.Data.Complex.Exponential
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.Geometry.Manifold.VectorBundle.Basic
|
||
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
||
import Mathlib.Geometry.Manifold.Instances.Real
|
||
import Mathlib.RepresentationTheory.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||
import Mathlib.Geometry.Manifold.ContMDiff.Product
|
||
import Mathlib.Algebra.QuadraticDiscriminant
|
||
/-!
|
||
# The Higgs field
|
||
|
||
This file defines the basic properties for the higgs field in the standard model.
|
||
|
||
## References
|
||
|
||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
||
|
||
-/
|
||
universe v u
|
||
namespace StandardModel
|
||
noncomputable section
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
open spaceTime
|
||
|
||
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
|
||
abbrev higgsBundle := Bundle.Trivial spaceTime higgsVec
|
||
|
||
instance : SmoothVectorBundle higgsVec higgsBundle spaceTime.asSmoothManifold :=
|
||
Bundle.Trivial.smoothVectorBundle higgsVec 𝓘(ℝ, spaceTime)
|
||
|
||
/-- A higgs field is a smooth section of the higgs bundle. -/
|
||
abbrev higgsField : Type := SmoothSection spaceTime.asSmoothManifold higgsVec higgsBundle
|
||
|
||
instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
||
exact Pi.normedAddCommGroup
|
||
|
||
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
||
section. -/
|
||
noncomputable def higgsVec.toField (φ : higgsVec) : higgsField where
|
||
toFun := fun _ ↦ φ
|
||
contMDiff_toFun := by
|
||
intro x
|
||
rw [Bundle.contMDiffAt_section]
|
||
exact smoothAt_const
|
||
|
||
namespace higgsField
|
||
open Complex Real
|
||
|
||
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
||
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
|
||
|
||
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by
|
||
intro x0
|
||
have h1 := φ.contMDiff x0
|
||
rw [Bundle.contMDiffAt_section] at h1
|
||
have h2 :
|
||
(fun x => ((trivializationAt higgsVec (Bundle.Trivial spaceTime higgsVec) x0)
|
||
{ proj := x, snd := φ x }).2) = φ := by
|
||
rfl
|
||
simp only [h2] at h1
|
||
exact h1
|
||
|
||
lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) :
|
||
(φ.toHiggsVec x).toField x = φ x := rfl
|
||
|
||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) :
|
||
higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
||
|
||
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
||
smooth_higgsVecToFin2ℂ.comp φ.toHiggsVec_smooth
|
||
|
||
lemma apply_smooth (φ : higgsField) :
|
||
∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) :=
|
||
(smooth_pi_space).mp (φ.toVec_smooth)
|
||
|
||
lemma apply_re_smooth (φ : higgsField) (i : Fin 2):
|
||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||
(ContinuousLinearMap.smooth reCLM).comp (φ.apply_smooth i)
|
||
|
||
lemma apply_im_smooth (φ : higgsField) (i : Fin 2):
|
||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
|
||
|
||
/-- Given two `higgsField`, the map `spaceTime → ℂ` obtained by taking their inner product. -/
|
||
def innerProd (φ1 φ2 : higgsField) : spaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ
|
||
|
||
|
||
/-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the
|
||
higgs vector. -/
|
||
@[simp]
|
||
def normSq (φ : higgsField) : spaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
||
|
||
lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) :
|
||
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
|
||
|
||
lemma normSq_expand (φ : higgsField) :
|
||
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
||
funext x
|
||
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ℂ]
|
||
|
||
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
||
rw [normSq_expand]
|
||
refine Smooth.add ?_ ?_
|
||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||
refine Smooth.add ?_ ?_
|
||
refine Smooth.smul ?_ ?_
|
||
exact φ.apply_re_smooth 0
|
||
exact φ.apply_re_smooth 0
|
||
refine Smooth.smul ?_ ?_
|
||
exact φ.apply_im_smooth 0
|
||
exact φ.apply_im_smooth 0
|
||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||
refine Smooth.add ?_ ?_
|
||
refine Smooth.smul ?_ ?_
|
||
exact φ.apply_re_smooth 1
|
||
exact φ.apply_re_smooth 1
|
||
refine Smooth.smul ?_ ?_
|
||
exact φ.apply_im_smooth 1
|
||
exact φ.apply_im_smooth 1
|
||
|
||
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
|
||
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
||
|
||
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
||
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
||
|
||
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
|
||
@[simp]
|
||
def potential (φ : higgsField) (μSq lambda : ℝ ) (x : spaceTime) : ℝ :=
|
||
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
|
||
|
||
lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ) :
|
||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||
simp only [potential, normSq, neg_mul]
|
||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||
|
||
lemma potential_apply (φ : higgsField) (μSq lambda : ℝ) (x : spaceTime) :
|
||
(φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
||
simp [higgsVec.potential, toHiggsVec_norm]
|
||
ring
|
||
|
||
|
||
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
|
||
|
||
lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by
|
||
intro x _
|
||
simp [higgsVec.toField]
|
||
|
||
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField :=
|
||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||
|
||
lemma normSq_of_higgsVec (φ : higgsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||
funext x
|
||
simp [normSq, higgsVec.toField]
|
||
|
||
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ) :
|
||
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
|
||
simp [higgsVec.potential]
|
||
unfold potential
|
||
rw [normSq_of_higgsVec]
|
||
ring_nf
|
||
|
||
end higgsField
|
||
end
|
||
end StandardModel
|