210 lines
6.7 KiB
Text
210 lines
6.7 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.FeynmanDiagrams.Basic
|
||
import Mathlib.Data.Real.Basic
|
||
import Mathlib.Algebra.DirectSum.Module
|
||
import Mathlib.LinearAlgebra.SesquilinearForm
|
||
import Mathlib.LinearAlgebra.Dimension.Finrank
|
||
/-!
|
||
# Momentum in Feynman diagrams
|
||
|
||
The aim of this file is to associate with each half-edge of a Feynman diagram a momentum,
|
||
and constrain the momentums based conservation at each vertex and edge.
|
||
|
||
The number of loops of a Feynman diagram is related to the dimension of the resulting
|
||
vector space.
|
||
|
||
## TODO
|
||
|
||
- Prove lemmas that make the calculation of the number of loops of a Feynman diagram easier.
|
||
|
||
## Note
|
||
|
||
This section is non-computable as we depend on the norm on `F.HalfEdgeMomenta`.
|
||
-/
|
||
|
||
namespace FeynmanDiagram
|
||
|
||
open CategoryTheory
|
||
open PreFeynmanRule
|
||
|
||
variable {P : PreFeynmanRule} (F : FeynmanDiagram P) [IsFiniteDiagram F]
|
||
|
||
/-!
|
||
|
||
## Vector spaces associated with momenta in Feynman diagrams.
|
||
|
||
We define the vector space associated with momenta carried by half-edges,
|
||
outflowing momenta of edges, and inflowing momenta of vertices.
|
||
|
||
We define the direct sum of the edge and vertex momentum spaces.
|
||
|
||
-/
|
||
|
||
/-- The type which assocaites to each half-edge a `1`-dimensional vector space.
|
||
Corresponding to that spanned by its momentum. -/
|
||
def HalfEdgeMomenta : Type := F.𝓱𝓔 → ℝ
|
||
|
||
instance : AddCommGroup F.HalfEdgeMomenta := Pi.addCommGroup
|
||
|
||
instance : Module ℝ F.HalfEdgeMomenta := Pi.module _ _ _
|
||
|
||
/-- An auxiliary function used to define the Euclidean inner product on `F.HalfEdgeMomenta`. -/
|
||
def euclidInnerAux (x : F.HalfEdgeMomenta) : F.HalfEdgeMomenta →ₗ[ℝ] ℝ where
|
||
toFun y := ∑ i, (x i) * (y i)
|
||
map_add' z y :=
|
||
show (∑ i, (x i) * (z i + y i)) = (∑ i, x i * z i) + ∑ i, x i * (y i) by
|
||
simp only [mul_add, Finset.sum_add_distrib]
|
||
map_smul' c y :=
|
||
show (∑ i, x i * (c * y i)) = c * ∑ i, x i * y i by
|
||
rw [Finset.mul_sum]
|
||
refine Finset.sum_congr rfl (fun _ _ => by ring)
|
||
|
||
lemma euclidInnerAux_symm (x y : F.HalfEdgeMomenta) :
|
||
F.euclidInnerAux x y = F.euclidInnerAux y x := Finset.sum_congr rfl (fun _ _ => by ring)
|
||
|
||
/-- The Euclidean inner product on `F.HalfEdgeMomenta`. -/
|
||
def euclidInner : F.HalfEdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta →ₗ[ℝ] ℝ where
|
||
toFun x := F.euclidInnerAux x
|
||
map_add' x y := by
|
||
refine LinearMap.ext (fun z => ?_)
|
||
simp only [euclidInnerAux_symm, map_add, LinearMap.add_apply]
|
||
map_smul' c x := by
|
||
refine LinearMap.ext (fun z => ?_)
|
||
simp only [euclidInnerAux_symm, LinearMapClass.map_smul, smul_eq_mul, RingHom.id_apply,
|
||
LinearMap.smul_apply]
|
||
|
||
/-- The type which associates to each edge a `1`-dimensional vector space.
|
||
Corresponding to that spanned by its total outflowing momentum. -/
|
||
def EdgeMomenta : Type := F.𝓔 → ℝ
|
||
|
||
instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup
|
||
|
||
instance : Module ℝ F.EdgeMomenta := Pi.module _ _ _
|
||
|
||
/-- The type which assocaites to each ege a `1`-dimensional vector space.
|
||
Corresponding to that spanned by its total inflowing momentum. -/
|
||
def VertexMomenta : Type := F.𝓥 → ℝ
|
||
|
||
instance : AddCommGroup F.VertexMomenta := Pi.addCommGroup
|
||
|
||
instance : Module ℝ F.VertexMomenta := Pi.module _ _ _
|
||
|
||
/-- The map from `Fin 2` to `Type` landing on `EdgeMomenta` and `VertexMomenta`. -/
|
||
def EdgeVertexMomentaMap : Fin 2 → Type := fun i =>
|
||
match i with
|
||
| 0 => F.EdgeMomenta
|
||
| 1 => F.VertexMomenta
|
||
|
||
instance (i : Fin 2) : AddCommGroup (EdgeVertexMomentaMap F i) :=
|
||
match i with
|
||
| 0 => instAddCommGroupEdgeMomenta F
|
||
| 1 => instAddCommGroupVertexMomenta F
|
||
|
||
instance (i : Fin 2) : Module ℝ (EdgeVertexMomentaMap F i) :=
|
||
match i with
|
||
| 0 => instModuleRealEdgeMomenta F
|
||
| 1 => instModuleRealVertexMomenta F
|
||
|
||
/-- The direct sum of `EdgeMomenta` and `VertexMomenta`. -/
|
||
def EdgeVertexMomenta : Type := DirectSum (Fin 2) (EdgeVertexMomentaMap F)
|
||
|
||
instance : AddCommGroup F.EdgeVertexMomenta := DirectSum.instAddCommGroup _
|
||
|
||
instance : Module ℝ F.EdgeVertexMomenta := DirectSum.instModule
|
||
|
||
/-!
|
||
|
||
## Linear maps between the vector spaces.
|
||
|
||
We define various maps into `F.HalfEdgeMomenta`.
|
||
|
||
In particular, we define a map from `F.EdgeVertexMomenta` to `F.HalfEdgeMomenta`. This
|
||
map represents the space orthogonal (with respect to the standard Euclidean inner product)
|
||
to the allowed momenta of half-edges (up-to an offset determined by the
|
||
external momenta).
|
||
|
||
The number of loops of a diagram is defined as the number of half-edges minus
|
||
the rank of this matrix.
|
||
|
||
-/
|
||
|
||
/-- The linear map from `F.EdgeMomenta` to `F.HalfEdgeMomenta` induced by
|
||
the map `F.𝓱𝓔To𝓔.hom`. -/
|
||
def edgeToHalfEdgeMomenta : F.EdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta where
|
||
toFun x := x ∘ F.𝓱𝓔To𝓔.hom
|
||
map_add' _ _ := by rfl
|
||
map_smul' _ _ := by rfl
|
||
|
||
/-- The linear map from `F.VertexMomenta` to `F.HalfEdgeMomenta` induced by
|
||
the map `F.𝓱𝓔To𝓥.hom`. -/
|
||
def vertexToHalfEdgeMomenta : F.VertexMomenta →ₗ[ℝ] F.HalfEdgeMomenta where
|
||
toFun x := x ∘ F.𝓱𝓔To𝓥.hom
|
||
map_add' _ _ := rfl
|
||
map_smul' _ _ := rfl
|
||
|
||
/-- The linear map from `F.EdgeVertexMomenta` to `F.HalfEdgeMomenta` induced by
|
||
`F.edgeToHalfEdgeMomenta` and `F.vertexToHalfEdgeMomenta`. -/
|
||
def edgeVertexToHalfEdgeMomenta : F.EdgeVertexMomenta →ₗ[ℝ] F.HalfEdgeMomenta :=
|
||
DirectSum.toModule ℝ (Fin 2) F.HalfEdgeMomenta
|
||
(fun i => match i with | 0 => F.edgeToHalfEdgeMomenta | 1 => F.vertexToHalfEdgeMomenta)
|
||
|
||
/-!
|
||
|
||
## Submodules
|
||
|
||
We define submodules of `F.HalfEdgeMomenta` which correspond to
|
||
the orthogonal space to allowed momenta (up-to an offset), and the space of
|
||
allowed momenta.
|
||
|
||
-/
|
||
|
||
/-- The submodule of `F.HalfEdgeMomenta` corresponding to the range of
|
||
`F.edgeVertexToHalfEdgeMomenta`. -/
|
||
def orthogHalfEdgeMomenta : Submodule ℝ F.HalfEdgeMomenta :=
|
||
LinearMap.range F.edgeVertexToHalfEdgeMomenta
|
||
|
||
/-- The submodule of `F.HalfEdgeMomenta` corresponding to the allowed momenta. -/
|
||
def allowedHalfEdgeMomenta : Submodule ℝ F.HalfEdgeMomenta :=
|
||
Submodule.orthogonalBilin F.orthogHalfEdgeMomenta F.euclidInner
|
||
|
||
/-!
|
||
|
||
## Number of loops
|
||
|
||
We define the number of loops of a Feynman diagram as the dimension of the
|
||
allowed space of half-edge momenta.
|
||
|
||
-/
|
||
|
||
/-- The number of loops of a Feynman diagram. Defined as the dimension
|
||
of the space of allowed Half-loop momenta. -/
|
||
noncomputable def numberOfLoops : ℕ := FiniteDimensional.finrank ℝ F.allowedHalfEdgeMomenta
|
||
|
||
/-!
|
||
|
||
## Lemmas regarding `numberOfLoops`
|
||
|
||
We now give a series of lemmas which be used to help calculate the number of loops
|
||
for specific Feynman diagrams.
|
||
|
||
### TODO
|
||
|
||
- Complete this section.
|
||
|
||
-/
|
||
|
||
/-!
|
||
|
||
## Category theory
|
||
|
||
### TODO
|
||
|
||
- Complete this section.
|
||
|
||
-/
|
||
|
||
end FeynmanDiagram
|