PhysLean/HepLean/SpaceTime/MinkowskiMetric.lean
2024-07-19 17:00:32 -04:00

346 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Basic
import Mathlib.Algebra.Lie.Classical
/-!
# The Minkowski Metric
This file introduces the Minkowski metric on spacetime in the mainly-minus signature.
We define the Minkowski metric as a bilinear map on the vector space
of Lorentz vectors in d dimensions.
-/
open Matrix
/-!
# The definition of the Minkowski Matrix
-/
/-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/
def minkowskiMatrix {d : } : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) :=
LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d)
namespace minkowskiMatrix
variable {d : }
/-- Notation for `minkowskiMatrix`. -/
scoped[minkowskiMatrix] notation "η" => minkowskiMatrix
@[simp]
lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
ext1 i j
rcases i with i | i <;> rcases j with j | j
· simp only [diagonal, of_apply, Sum.inl.injEq, Sum.elim_inl, mul_one]
split
· rename_i h
subst h
simp_all only [one_apply_eq]
· simp_all only [ne_eq, Sum.inl.injEq, not_false_eq_true, one_apply_ne]
· simp only [ne_eq, not_false_eq_true, diagonal_apply_ne, one_apply_ne]
· simp only [ne_eq, not_false_eq_true, diagonal_apply_ne, one_apply_ne]
· simp only [diagonal, of_apply, Sum.inr.injEq, Sum.elim_inr, mul_neg, mul_one, neg_neg]
split
· rename_i h
subst h
simp_all only [one_apply_eq]
· simp_all only [ne_eq, Sum.inr.injEq, not_false_eq_true, one_apply_ne]
@[simp]
lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose]
@[simp]
lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
lemma as_block : @minkowskiMatrix d = (
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ) 0 0 (-1 : Matrix (Fin d) (Fin d) )) := by
rw [minkowskiMatrix]
simp [LieAlgebra.Orthogonal.indefiniteDiagonal]
rw [← fromBlocks_diagonal]
refine fromBlocks_inj.mpr ?_
simp only [diagonal_one, true_and]
funext i j
rw [← diagonal_neg]
rfl
end minkowskiMatrix
/-!
# The definition of the Minkowski Metric
-/
/-- Given a Lorentz vector `v` we define the the linear map `w ↦ v * η * w`. -/
@[simps!]
def minkowskiLinearForm {d : } (v : LorentzVector d) : LorentzVector d →ₗ[] where
toFun w := v ⬝ᵥ (minkowskiMatrix *ᵥ w)
map_add' y z := by
noncomm_ring
rw [mulVec_add, dotProduct_add]
map_smul' c y := by
simp only [RingHom.id_apply, smul_eq_mul]
rw [mulVec_smul, dotProduct_smul]
rfl
/-- The Minkowski metric as a bilinear map. -/
def minkowskiMetric {d : } : LorentzVector d →ₗ[] LorentzVector d →ₗ[] where
toFun v := minkowskiLinearForm v
map_add' y z := by
ext1 x
simp only [minkowskiLinearForm_apply, LinearMap.add_apply]
apply add_dotProduct
map_smul' c y := by
ext1 x
simp only [minkowskiLinearForm_apply, RingHom.id_apply, LinearMap.smul_apply, smul_eq_mul]
rw [smul_dotProduct]
rfl
namespace minkowskiMetric
open minkowskiMatrix
open LorentzVector
variable {d : }
variable (v w : LorentzVector d)
/-- Notation for `minkowskiMetric`. -/
scoped[minkowskiMetric] notation "⟪" v "," w "⟫ₘ" => minkowskiMetric v w
/-!
# Equalitites involving the Minkowski metric
-/
/-- The Minkowski metric expressed as a sum. -/
lemma as_sum :
⟪v, w⟫ₘ = v.time * w.time - ∑ i, v.space i * w.space i := by
simp only [minkowskiMetric, LinearMap.coe_mk, AddHom.coe_mk, minkowskiLinearForm_apply,
dotProduct, LieAlgebra.Orthogonal.indefiniteDiagonal, mulVec_diagonal, Fintype.sum_sum_type,
Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Sum.elim_inl, one_mul,
Finset.sum_singleton, Sum.elim_inr, neg_mul, mul_neg, Finset.sum_neg_distrib, time, space,
Function.comp_apply, minkowskiMatrix]
ring
/-- The Minkowski metric expressed as a sum for a single vector. -/
lemma as_sum_self : ⟪v, v⟫ₘ = v.time ^ 2 - ‖v.space‖ ^ 2 := by
rw [← real_inner_self_eq_norm_sq, PiLp.inner_apply, as_sum]
noncomm_ring
lemma eq_time_minus_inner_prod : ⟪v, w⟫ₘ = v.time * w.time - ⟪v.space, w.space⟫_ := by
rw [as_sum, @PiLp.inner_apply]
noncomm_ring
lemma self_eq_time_minus_norm : ⟪v, v⟫ₘ = v.time ^ 2 - ‖v.space‖ ^ 2 := by
rw [← real_inner_self_eq_norm_sq, PiLp.inner_apply, as_sum]
noncomm_ring
/-- The Minkowski metric is symmetric in its arguments.. -/
lemma symm : ⟪v, w⟫ₘ = ⟪w, v⟫ₘ := by
simp only [as_sum]
ac_rfl
lemma time_sq_eq_metric_add_space : v.time ^ 2 = ⟪v, v⟫ₘ + ‖v.space‖ ^ 2 := by
rw [self_eq_time_minus_norm]
exact Eq.symm (sub_add_cancel (v.time ^ 2) (‖v.space‖ ^ 2))
/-!
# Minkowski metric and space reflections
-/
lemma right_spaceReflection : ⟪v, w.spaceReflection⟫ₘ = v.time * w.time + ⟪v.space, w.space⟫_ := by
rw [eq_time_minus_inner_prod, spaceReflection_space, spaceReflection_time]
simp only [time, Fin.isValue, space, inner_neg_right, PiLp.inner_apply, Function.comp_apply,
RCLike.inner_apply, conj_trivial, sub_neg_eq_add]
lemma self_spaceReflection_eq_zero_iff : ⟪v, v.spaceReflection⟫ₘ = 0 ↔ v = 0 := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· rw [right_spaceReflection] at h
have h2 : 0 ≤ ⟪v.space, v.space⟫_ := real_inner_self_nonneg
have h3 : v.time * v.time = 0 := by linarith [mul_self_nonneg v.time]
have h4 : ⟪v.space, v.space⟫_ = 0 := by linarith
simp only [time, Fin.isValue, mul_eq_zero, or_self] at h3
rw [@inner_self_eq_zero] at h4
funext i
rcases i with i | i
· fin_cases i
exact h3
· simpa using congrFun h4 i
· rw [h]
simp only [map_zero, LinearMap.zero_apply]
/-!
# Non degeneracy of the Minkowski metric
-/
/-- The metric tensor is non-degenerate. -/
lemma nondegenerate : (∀ w, ⟪w, v⟫ₘ = 0) ↔ v = 0 := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· exact (self_spaceReflection_eq_zero_iff _).mp ((symm _ _).trans $ h v.spaceReflection)
· simp [h]
/-!
# Inequalities involving the Minkowski metric
-/
lemma leq_time_sq : ⟪v, v⟫ₘ ≤ v.time ^ 2 := by
rw [time_sq_eq_metric_add_space]
exact (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖v.space‖
lemma ge_abs_inner_product : v.time * w.time - ‖⟪v.space, w.space⟫_‖ ≤ ⟪v, w⟫ₘ := by
rw [eq_time_minus_inner_prod, sub_le_sub_iff_left]
exact Real.le_norm_self ⟪v.space, w.space⟫_
lemma ge_sub_norm : v.time * w.time - ‖v.space‖ * ‖w.space‖ ≤ ⟪v, w⟫ₘ := by
apply le_trans ?_ (ge_abs_inner_product v w)
rw [sub_le_sub_iff_left]
exact norm_inner_le_norm v.space w.space
/-!
# The Minkowski metric and matrices
-/
section matrices
variable (Λ Λ' : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) )
/-- The dual of a matrix with respect to the Minkowski metric. -/
def dual : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) := η * Λᵀ * η
@[simp]
lemma dual_id : @dual d 1 = 1 := by
simpa only [dual, transpose_one, mul_one] using minkowskiMatrix.sq
@[simp]
lemma dual_mul : dual (Λ * Λ') = dual Λ' * dual Λ := by
simp only [dual, transpose_mul]
trans η * Λ'ᵀ * (η * η) * Λᵀ * η
noncomm_ring [minkowskiMatrix.sq]
noncomm_ring
@[simp]
lemma dual_dual : dual (dual Λ) = Λ := by
simp only [dual, transpose_mul, transpose_transpose, eq_transpose]
trans (η * η) * Λ * (η * η)
noncomm_ring
noncomm_ring [minkowskiMatrix.sq]
@[simp]
lemma dual_eta : @dual d η = η := by
simp only [dual, eq_transpose]
noncomm_ring [minkowskiMatrix.sq]
@[simp]
lemma dual_transpose : dual Λᵀ = (dual Λ)ᵀ := by
simp only [dual, transpose_transpose, transpose_mul, eq_transpose]
noncomm_ring
@[simp]
lemma det_dual : (dual Λ).det = Λ.det := by
simp only [dual, det_mul, minkowskiMatrix.det_eq_neg_one_pow_d, det_transpose]
group
norm_cast
simp
@[simp]
lemma dual_mulVec_right : ⟪x, (dual Λ) *ᵥ y⟫ₘ = ⟪Λ *ᵥ x, y⟫ₘ := by
simp only [minkowskiMetric, LinearMap.coe_mk, AddHom.coe_mk, dual, minkowskiLinearForm_apply,
mulVec_mulVec, ← mul_assoc, minkowskiMatrix.sq, one_mul, (vecMul_transpose Λ x).symm, ←
dotProduct_mulVec]
@[simp]
lemma dual_mulVec_left : ⟪(dual Λ) *ᵥ x, y⟫ₘ = ⟪x, Λ *ᵥ y⟫ₘ := by
rw [symm, dual_mulVec_right, symm]
lemma matrix_apply_eq_iff_sub : ⟪v, Λ *ᵥ w⟫ₘ = ⟪v, Λ' *ᵥ w⟫ₘ ↔ ⟪v, (Λ - Λ') *ᵥ w⟫ₘ = 0 := by
rw [← sub_eq_zero, ← LinearMap.map_sub, sub_mulVec]
lemma matrix_eq_iff_eq_forall' : (∀ v, Λ *ᵥ v= Λ' *ᵥ v) ↔ ∀ w v, ⟪v, Λ *ᵥ w⟫ₘ = ⟪v, Λ' *ᵥ w⟫ₘ := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· intro w v
rw [h w]
· simp only [matrix_apply_eq_iff_sub] at h
intro v
refine sub_eq_zero.1 ?_
have h1 := h v
rw [nondegenerate] at h1
simp [sub_mulVec] at h1
exact h1
lemma matrix_eq_iff_eq_forall : Λ = Λ' ↔ ∀ w v, ⟪v, Λ *ᵥ w⟫ₘ = ⟪v, Λ' *ᵥ w⟫ₘ := by
rw [← matrix_eq_iff_eq_forall']
refine Iff.intro (fun h => ?_) (fun h => ?_)
· rw [h]
simp
· rw [← (LinearMap.toMatrix stdBasis stdBasis).toEquiv.symm.apply_eq_iff_eq]
ext1 x
simp only [LinearEquiv.coe_toEquiv_symm, LinearMap.toMatrix_symm, EquivLike.coe_coe,
toLin_apply, h, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton]
lemma matrix_eq_id_iff : Λ = 1 ↔ ∀ w v, ⟪v, Λ *ᵥ w⟫ₘ = ⟪v, w⟫ₘ := by
rw [matrix_eq_iff_eq_forall]
simp
/-!
# The Minkowski metric and the standard basis
-/
@[simp]
lemma basis_left (μ : Fin 1 ⊕ Fin d) : ⟪e μ, v⟫ₘ = η μ μ * v μ := by
rw [as_sum]
rcases μ with μ | μ
· fin_cases μ
simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
· simp [stdBasis_apply, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
lemma on_timeVec : ⟪timeVec, @timeVec d⟫ₘ = 1 := by
simp only [timeVec, Fin.isValue, basis_left, minkowskiMatrix,
LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_apply_eq, Sum.elim_inl, stdBasis_apply,
↓reduceIte, mul_one]
lemma on_basis_mulVec (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, Λ *ᵥ e ν⟫ₘ = η μ μ * Λ μ ν := by
simp [basis_left, mulVec, dotProduct, stdBasis_apply]
lemma on_basis (μ ν : Fin 1 ⊕ Fin d) : ⟪e μ, e ν⟫ₘ = η μ ν := by
rw [basis_left, stdBasis_apply]
by_cases h : μ = ν
· simp [h]
· simp [h, LieAlgebra.Orthogonal.indefiniteDiagonal, minkowskiMatrix]
exact fun a => False.elim (h (id (Eq.symm a)))
lemma matrix_apply_stdBasis (ν μ : Fin 1 ⊕ Fin d) :
Λ ν μ = η ν ν * ⟪e ν, Λ *ᵥ e μ⟫ₘ := by
rw [on_basis_mulVec, ← mul_assoc]
have h1 : η ν ν * η ν ν = 1 := by
simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
rcases μ
· rcases ν
· simp_all only [Sum.elim_inl, mul_one]
· simp_all only [Sum.elim_inr, mul_neg, mul_one, neg_neg]
· rcases ν
· simp_all only [Sum.elim_inl, mul_one]
· simp_all only [Sum.elim_inr, mul_neg, mul_one, neg_neg]
simp [h1]
end matrices
end minkowskiMetric