174 lines
7.2 KiB
Text
174 lines
7.2 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.StandardModel.HiggsBoson.Basic
|
||
import Mathlib.RepresentationTheory.Basic
|
||
import HepLean.StandardModel.Basic
|
||
import HepLean.StandardModel.Representations
|
||
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||
/-!
|
||
|
||
# The action of the gauge group on the Higgs field
|
||
|
||
-/
|
||
/-! TODO: Currently this only contains the action of the global gauge group. Generalize. -/
|
||
noncomputable section
|
||
|
||
namespace StandardModel
|
||
|
||
namespace HiggsVec
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
/-!
|
||
|
||
## The representation of the gauge group on the Higgs vector space
|
||
|
||
-/
|
||
|
||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||
@[simps!]
|
||
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||
map_mul' := by
|
||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
|
||
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
|
||
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||
repeat rw [mul_assoc]
|
||
map_one' := by simp
|
||
|
||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||
toFun g := LinearMap.toContinuousLinearMap
|
||
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
|
||
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
|
||
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
|
||
|
||
/-- `matrixToLin` commutes with the `star` operation. -/
|
||
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
matrixToLin (star g) = star (matrixToLin g) :=
|
||
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
|
||
|
||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||
matrixToLin g ∈ unitary (HiggsVec →L[ℂ] HiggsVec) := by
|
||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||
simp
|
||
|
||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||
of `higgsVec`. -/
|
||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (HiggsVec →L[ℂ] HiggsVec) where
|
||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||
map_mul' g h := by simp
|
||
map_one' := by simp
|
||
|
||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||
@[simps!]
|
||
def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[ℂ] HiggsVec :=
|
||
DistribMulAction.toModuleEnd ℂ HiggsVec
|
||
|
||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||
@[simps!]
|
||
def rep : Representation ℂ GaugeGroup HiggsVec :=
|
||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||
|
||
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||
|
||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||
higgsRepUnitary_mul g φ
|
||
|
||
/-!
|
||
|
||
# Gauge freedom
|
||
|
||
-/
|
||
|
||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||
vector to zero, and the second component to a real -/
|
||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
![![φ 1 /‖φ‖, - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖, conj (φ 1) / ‖φ‖]]
|
||
|
||
lemma rotateMatrix_star (φ : HiggsVec) :
|
||
star φ.rotateMatrix =
|
||
![![conj (φ 1) /‖φ‖, φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖, φ 1 / ‖φ‖]] := by
|
||
simp_rw [star, rotateMatrix, conjTranspose]
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||
|
||
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
field_simp [rotateMatrix, det_fin_two]
|
||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||
|
||
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||
erw [mul_fin_two, one_fin_two]
|
||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;> field_simp
|
||
<;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||
· ring_nf
|
||
· ring_nf
|
||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||
|
||
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||
|
||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||
vector to zero, and the second component to a real number. -/
|
||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
|
||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||
|
||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||
rw [rep_apply]
|
||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
|
||
ext i
|
||
fin_cases i
|
||
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
|
||
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||
ring_nf
|
||
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
|
||
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
|
||
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
field_simp
|
||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||
|
||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||
∃ (g : GaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||
by_cases h : φ = 0
|
||
· use ⟨1, 1, 1⟩
|
||
simp [h]
|
||
ext i
|
||
fin_cases i <;> rfl
|
||
· use rotateGuageGroup h
|
||
exact rotateGuageGroup_apply h
|
||
|
||
end HiggsVec
|
||
|
||
/-! TODO: Define the global gauge action on HiggsField. -/
|
||
/-! TODO: Prove `⟪φ1, φ2⟫_H` invariant under the global gauge action. (norm_map_of_mem_unitary) -/
|
||
/-! TODO: Prove invariance of potential under global gauge action. -/
|
||
|
||
end StandardModel
|
||
end
|