52 lines
1.7 KiB
Text
52 lines
1.7 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzTensor.Basic
|
||
/-!
|
||
|
||
# Lorentz tensors indexed by Fin n
|
||
|
||
In physics, in many (if not all) cases, we index our Lorentz tensors by `Fin n`.
|
||
|
||
In this file we set up the machinery to deal with Lorentz tensors indexed by `Fin n`
|
||
in a way that is convenient for physicists, and general caculation.
|
||
|
||
## Note
|
||
|
||
This file is currently a stub.
|
||
|
||
-/
|
||
|
||
open TensorProduct
|
||
|
||
noncomputable section
|
||
|
||
namespace TensorStructure
|
||
|
||
variable {n m : ℕ}
|
||
|
||
variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R)
|
||
|
||
variable {d : ℕ} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
|
||
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||
{cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color}
|
||
|
||
/-- Casting a tensor defined on `Fin n` to `Fin m` where `n = m`. -/
|
||
@[simp]
|
||
def finCast (h : n = m) (hc : cn = cm ∘ Fin.castOrderIso h) : 𝓣.Tensor cn ≃ₗ[R] 𝓣.Tensor cm :=
|
||
𝓣.mapIso (Fin.castOrderIso h) hc
|
||
|
||
/-- An equivalence between `𝓣.Tensor cn ⊗[R] 𝓣.Tensor cm` indexed by `Fin n` and `Fin m`,
|
||
and `𝓣.Tensor (Sum.elim cn cm ∘ finSumFinEquiv.symm)` indexed by `Fin (n + m)`. -/
|
||
@[simp]
|
||
def finSumEquiv : 𝓣.Tensor cn ⊗[R] 𝓣.Tensor cm ≃ₗ[R]
|
||
𝓣.Tensor (Sum.elim cn cm ∘ finSumFinEquiv.symm) :=
|
||
(𝓣.tensoratorEquiv cn cm).trans (𝓣.mapIso finSumFinEquiv (by funext a; simp))
|
||
|
||
end TensorStructure
|
||
|
||
end
|