PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/GetDual.lean

113 lines
3.5 KiB
Text

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.DualIndex
/-!
# Dual indices
-/
namespace IndexNotation
namespace IndexList
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
variable (l l2 : IndexList X)
def getDual (i : Fin l.length) : Option (Fin l.length) :=
if h : l.HasDualInSelf i then
some h.getFirst
else
none
lemma getDual_of_hasDualInSelf {i : Fin l.length} (h : l.HasDualInSelf i) :
l.getDual i = some h.getFirst := by
simp [getDual, h]
lemma getDual_of_not_hasDualInSelf {i : Fin l.length} (h : ¬l.HasDualInSelf i) :
l.getDual i = none := by
simp [getDual, h]
def getDualOther (i : Fin l.length) : Option (Fin l2.length) :=
if h : l.HasDualInOther l2 i then
some h.getFirst
else
none
lemma getDualOther_of_hasDualInOther {i : Fin l.length} (h : l.HasDualInOther l2 i) :
l.getDualOther l2 i = some h.getFirst := by
simp [getDualOther, h]
lemma getDualOther_of_not_hasDualInOther {i : Fin l.length} (h : ¬l.HasDualInOther l2 i) :
l.getDualOther l2 i = none := by
simp [getDualOther, h]
/-!
## Append relations
-/
@[simp]
lemma getDual_append_inl (i : Fin l.length) : (l ++ l2).getDual (appendEquiv (Sum.inl i)) =
Option.or (Option.map (appendEquiv ∘ Sum.inl) (l.getDual i))
(Option.map (appendEquiv ∘ Sum.inr) (l.getDualOther l2 i)) := by
by_cases h : (l ++ l2).HasDualInSelf (appendEquiv (Sum.inl i))
· rw [(l ++ l2).getDual_of_hasDualInSelf h]
by_cases hl : l.HasDualInSelf i
· rw [l.getDual_of_hasDualInSelf hl]
simp
exact HasDualInSelf.getFirst_append_inl_of_hasDualInSelf l l2 h hl
· rw [l.getDual_of_not_hasDualInSelf hl]
simp at h hl
simp_all
rw [l.getDualOther_of_hasDualInOther l2 h]
simp only [Option.map_some', Function.comp_apply]
· rw [(l ++ l2).getDual_of_not_hasDualInSelf h]
simp at h
rw [l.getDual_of_not_hasDualInSelf h.1]
rw [l.getDualOther_of_not_hasDualInOther l2 h.2]
rfl
@[simp]
lemma getDual_append_inr (i : Fin l2.length) : (l ++ l2).getDual (appendEquiv (Sum.inr i)) =
Option.or (Option.map (appendEquiv ∘ Sum.inl) (l2.getDualOther l i))
(Option.map (appendEquiv ∘ Sum.inr) (l2.getDual i)) := by
by_cases h : (l ++ l2).HasDualInSelf (appendEquiv (Sum.inr i))
· rw [(l ++ l2).getDual_of_hasDualInSelf h]
by_cases hl1 : l2.HasDualInOther l i
· rw [l2.getDualOther_of_hasDualInOther l hl1]
simp
exact HasDualInSelf.getFirst_append_inr_of_hasDualInOther l l2 h hl1
· rw [l2.getDualOther_of_not_hasDualInOther l hl1]
simp at h hl1
simp_all
rw [l2.getDual_of_hasDualInSelf h]
simp only [Option.map_some', Function.comp_apply]
· rw [(l ++ l2).getDual_of_not_hasDualInSelf h]
simp at h
rw [l2.getDual_of_not_hasDualInSelf h.1]
rw [l2.getDualOther_of_not_hasDualInOther l h.2]
rfl
def HasSingDualsInSelf : Prop :=
∀ i, (l.getDual i).bind l.getDual = some i
def HasSingDualsInOther : Prop :=
(∀ i, (l.getDualOther l2 i).bind (l2.getDualOther l) = some i)
∧ (∀ i, (l2.getDualOther l i).bind (l.getDualOther l2) = some i)
def HasNoDualsInSelf : Prop := l.getDual = fun _ => none
lemma hasSingDualsInSelf_append :
(l ++ l2).HasSingDualsInSelf ↔
l.HasSingDualsInSelf ∧ l2.HasSingDualsInSelf ∧ HasSingDualsInOther l1 l2 := by
sorry
end IndexList
end IndexNotation