PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/TensorIndex.lean

499 lines
19 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.IndexListColor
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.RisingLowering
import HepLean.SpaceTime.LorentzTensor.Contraction
/-!
# The structure of a tensor with a string of indices
-/
/-! TODO: Introduce a way to change an index from e.g. `ᵘ¹` to `ᵘ²`.
Would be nice to have a tactic that did this automatically. -/
namespace TensorStructure
noncomputable section
open TensorColor
open IndexNotation
variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R)
variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν η : 𝓣.Color}
variable [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
/-- The structure an tensor with a index specification e.g. `ᵘ¹ᵤ₂`. -/
structure TensorIndex where
/-- The list of indices. -/
index : IndexListColor 𝓣.toTensorColor
/-- The underlying tensor. -/
tensor : 𝓣.Tensor index.1.colorMap
namespace TensorIndex
open TensorColor IndexListColor
variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
variable {n m : } {cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color}
lemma index_eq_colorMap_eq {T₁ T₂ : 𝓣.TensorIndex} (hi : T₁.index = T₂.index) :
(T₂.index).1.colorMap = (T₁.index).1.colorMap ∘ (Fin.castOrderIso (by rw [hi])).toEquiv := by
funext i
congr 1
rw [hi]
simp only [RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply]
exact
(Fin.heq_ext_iff (congrArg IndexList.numIndices (congrArg Subtype.val (id (Eq.symm hi))))).mpr
rfl
lemma ext (T₁ T₂ : 𝓣.TensorIndex) (hi : T₁.index = T₂.index)
(h : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [hi])).toEquiv
(index_eq_colorMap_eq hi) T₂.tensor) : T₁ = T₂ := by
cases T₁; cases T₂
simp at hi
subst hi
simp_all
lemma index_eq_of_eq {T₁ T₂ : 𝓣.TensorIndex} (h : T₁ = T₂) : T₁.index = T₂.index := by
cases h
rfl
@[simp]
lemma tensor_eq_of_eq {T₁ T₂ : 𝓣.TensorIndex} (h : T₁ = T₂) : T₁.tensor =
𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq h])).toEquiv
(index_eq_colorMap_eq (index_eq_of_eq h)) T₂.tensor := by
have hi := index_eq_of_eq h
cases T₁
cases T₂
simp at hi
subst hi
simpa using h
/-- The construction of a `TensorIndex` from a tensor, a IndexListColor, and a condition
on the dual maps. -/
def mkDualMap (T : 𝓣.Tensor cn) (l : IndexListColor 𝓣.toTensorColor) (hn : n = l.1.length)
(hd : ColorMap.DualMap l.1.colorMap (cn ∘ Fin.cast hn.symm)) :
𝓣.TensorIndex where
index := l
tensor :=
𝓣.mapIso (Equiv.refl _) (ColorMap.DualMap.split_dual' (by simp [hd])) <|
𝓣.dualize (ColorMap.DualMap.split l.1.colorMap (cn ∘ Fin.cast hn.symm)) <|
(𝓣.mapIso (Fin.castOrderIso hn).toEquiv rfl T : 𝓣.Tensor (cn ∘ Fin.cast hn.symm))
/-!
## The contraction of indices
-/
/-- The contraction of indices in a `TensorIndex`. -/
def contr (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where
index := T.index.contr
tensor :=
𝓣.mapIso (Fin.castOrderIso T.index.contr_numIndices.symm).toEquiv
T.index.contr_colorMap <|
𝓣.contr (T.index.splitContr).symm T.index.splitContr_map T.tensor
/-- Applying contr to a tensor whose indices has no contracts does not do anything. -/
@[simp]
lemma contr_of_hasNoContr (T : 𝓣.TensorIndex) (h : T.index.1.HasNoContr) :
T.contr = T := by
refine ext _ _ ?_ ?_
exact Subtype.eq (T.index.1.contr_of_hasNoContr h)
simp only [contr]
have h1 : IsEmpty T.index.1.contrPairSet := T.index.1.contrPairSet_isEmpty_of_hasNoContr h
cases T
rename_i i T
simp only
refine PiTensorProduct.induction_on' T ?_ (by
intro a b hx hy
simp [map_add, add_mul, hx, hy])
intro r f
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, LinearMapClass.map_smul, mapIso_tprod, id_eq,
eq_mpr_eq_cast, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv]
apply congrArg
erw [TensorStructure.contr_tprod_isEmpty]
erw [mapIso_tprod]
apply congrArg
funext l
rw [← LinearEquiv.symm_apply_eq]
simp only [colorModuleCast, Equiv.cast_symm, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv,
Function.comp_apply, LinearEquiv.coe_mk, Equiv.cast_apply, LinearEquiv.coe_symm_mk, cast_cast]
apply cast_eq_iff_heq.mpr
rw [splitContr_symm_apply_of_hasNoContr _ h]
rfl
@[simp]
lemma contr_contr (T : 𝓣.TensorIndex) : T.contr.contr = T.contr :=
T.contr.contr_of_hasNoContr T.index.1.contr_hasNoContr
@[simp]
lemma contr_index (T : 𝓣.TensorIndex) : T.contr.index = T.index.contr := rfl
/-!
## Scalar multiplication of
-/
/-- The scalar multiplication of a `TensorIndex` by an element of `R`. -/
instance : SMul R 𝓣.TensorIndex where
smul := fun r T => {
index := T.index
tensor := r • T.tensor}
@[simp]
lemma smul_index (r : R) (T : 𝓣.TensorIndex) : (r • T).index = T.index := rfl
@[simp]
lemma smul_tensor (r : R) (T : 𝓣.TensorIndex) : (r • T).tensor = r • T.tensor := rfl
@[simp]
lemma smul_contr (r : R) (T : 𝓣.TensorIndex) : (r • T).contr = r • T.contr := by
refine ext _ _ rfl ?_
simp only [contr, smul_index, smul_tensor, LinearMapClass.map_smul, Fin.castOrderIso_refl,
OrderIso.refl_toEquiv, mapIso_refl, LinearEquiv.refl_apply]
/-!
## Equivalence relation on `TensorIndex`
-/
/-- An (equivalence) relation on two `TensorIndex`.
The point in this equivalence relation is that certain things (like the
permutation of indices, the contraction of indices, or rising or lowering indices) can be placed
in the indices or moved to the tensor itself. These two descriptions are equivalent. -/
def Rel (T₁ T₂ : 𝓣.TensorIndex) : Prop :=
T₁.index.PermContr T₂.index ∧ ∀ (h : T₁.index.PermContr T₂.index),
T₁.contr.tensor = 𝓣.mapIso h.toEquiv.symm h.toEquiv_colorMap T₂.contr.tensor
namespace Rel
/-- Rel is reflexive. -/
lemma refl (T : 𝓣.TensorIndex) : Rel T T := by
apply And.intro
exact IndexListColor.PermContr.refl T.index
intro h
simp [PermContr.toEquiv_refl']
/-- Rel is symmetric. -/
lemma symm {T₁ T₂ : 𝓣.TensorIndex} (h : Rel T₁ T₂) : Rel T₂ T₁ := by
apply And.intro h.1.symm
intro h'
rw [← mapIso_symm]
symm
erw [LinearEquiv.symm_apply_eq]
rw [h.2]
apply congrFun
congr
exact h'.symm
/-- Rel is transitive. -/
lemma trans {T₁ T₂ T₃ : 𝓣.TensorIndex} (h1 : Rel T₁ T₂) (h2 : Rel T₂ T₃) : Rel T₁ T₃ := by
apply And.intro (h1.1.trans h2.1)
intro h
change _ = (𝓣.mapIso (h1.1.trans h2.1).toEquiv.symm _) T₃.contr.tensor
trans (𝓣.mapIso ((h1.1).toEquiv.trans (h2.1).toEquiv).symm (by
rw [PermContr.toEquiv_trans]
exact proof_2 T₁ T₃ h)) T₃.contr.tensor
swap
congr
rw [PermContr.toEquiv_trans]
erw [← mapIso_trans]
simp only [LinearEquiv.trans_apply]
apply (h1.2 h1.1).trans
apply congrArg
exact h2.2 h2.1
/-- Rel forms an equivalence relation. -/
lemma isEquivalence : Equivalence (@Rel _ _ 𝓣 _) where
refl := Rel.refl
symm := Rel.symm
trans := Rel.trans
/-- The equality of tensors corresponding to related tensor indices. -/
lemma to_eq {T₁ T₂ : 𝓣.TensorIndex} (h : Rel T₁ T₂) :
T₁.contr.tensor = 𝓣.mapIso h.1.toEquiv.symm h.1.toEquiv_colorMap T₂.contr.tensor := h.2 h.1
end Rel
/-- The structure of a Setoid on `𝓣.TensorIndex` induced by `Rel`. -/
instance asSetoid : Setoid 𝓣.TensorIndex := ⟨Rel, Rel.isEquivalence⟩
/-- A tensor index is equivalent to its contraction. -/
lemma rel_contr (T : 𝓣.TensorIndex) : T ≈ T.contr := by
apply And.intro
simp only [PermContr, contr_index, IndexListColor.contr_contr, List.Perm.refl, true_and]
rw [IndexListColor.contr_contr]
exact T.index.contr.1.hasNoContr_color_eq_of_id_eq T.index.1.contr_hasNoContr
intro h
rw [tensor_eq_of_eq T.contr_contr]
simp only [contr_index, mapIso_mapIso]
trans 𝓣.mapIso (Equiv.refl _) (by rfl) T.contr.tensor
simp only [contr_index, mapIso_refl, LinearEquiv.refl_apply]
congr
apply Equiv.ext
intro x
rw [PermContr.toEquiv_contr_eq T.index.contr_contr.symm]
rfl
lemma smul_equiv {T₁ T₂ : 𝓣.TensorIndex} (h : T₁ ≈ T₂) (r : R) : r • T₁ ≈ r • T₂ := by
apply And.intro h.1
intro h1
rw [tensor_eq_of_eq (smul_contr r T₁), tensor_eq_of_eq (smul_contr r T₂)]
simp only [contr_index, smul_index, Fin.castOrderIso_refl, OrderIso.refl_toEquiv, mapIso_refl,
smul_tensor, LinearMapClass.map_smul, LinearEquiv.refl_apply]
apply congrArg
exact h.2 h1
/-!
## Addition of allowed `TensorIndex`
-/
/-- The condition on tensors with indices for their addition to exists.
This condition states that the the indices of one tensor are exact permutations of indices
of another after contraction. This includes the id of the index and the color.
This condition is general enough to allow addition of e.g. `ψᵤ₁ᵤ₂ + φᵤ₂ᵤ₁`, but
will NOT allow e.g. `ψᵤ₁ᵤ₂ + φᵘ²ᵤ₁`. -/
def AddCond (T₁ T₂ : 𝓣.TensorIndex) : Prop :=
T₁.index.PermContr T₂.index
namespace AddCond
lemma to_PermContr {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) : T₁.index.PermContr T₂.index := h
@[symm]
lemma symm {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) : AddCond T₂ T₁ := by
rw [AddCond] at h
exact h.symm
lemma refl (T : 𝓣.TensorIndex) : AddCond T T := by
exact PermContr.refl _
lemma trans {T₁ T₂ T₃ : 𝓣.TensorIndex} (h1 : AddCond T₁ T₂) (h2 : AddCond T₂ T₃) :
AddCond T₁ T₃ := by
rw [AddCond] at h1 h2
exact h1.trans h2
lemma rel_left {T₁ T₁' T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₁ ≈ T₁') :
AddCond T₁' T₂ := h'.1.symm.trans h
lemma rel_right {T₁ T₂ T₂' : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₂ ≈ T₂') :
AddCond T₁ T₂' := h.trans h'.1
/-- The equivalence between indices after contraction given a `AddCond`. -/
@[simp]
def toEquiv {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
Fin T₁.contr.index.1.length ≃ Fin T₂.contr.index.1.length := h.to_PermContr.toEquiv
lemma toEquiv_colorMap {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
ColorMap.MapIso h.toEquiv (T₁.contr.index).1.colorMap (T₂.contr.index).1.colorMap :=
h.to_PermContr.toEquiv_colorMap'
end AddCond
/-- The addition of two `TensorIndex` given the condition that, after contraction,
their index lists are the same. -/
def add (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
𝓣.TensorIndex where
index := T₂.index.contr
tensor := (𝓣.mapIso h.toEquiv h.toEquiv_colorMap T₁.contr.tensor) + T₂.contr.tensor
/-- Notation for addition of tensor indices. -/
notation:71 T₁ "+["h"]" T₂:72 => add T₁ T₂ h
namespace AddCond
lemma add_right {T₁ T₂ T₃ : 𝓣.TensorIndex} (h : AddCond T₁ T₃) (h' : AddCond T₂ T₃) :
AddCond T₁ (T₂ +[h'] T₃) := by
simpa only [AddCond, add, contr_index] using h.rel_right T₃.rel_contr
lemma add_left {T₁ T₂ T₃ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : AddCond T₂ T₃) :
AddCond (T₁ +[h] T₂) T₃ :=
(add_right h'.symm h).symm
lemma of_add_right' {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃} (h : AddCond T₁ (T₂ +[h'] T₃)) :
AddCond T₁ T₃ := by
change T₁.AddCond T₃.contr at h
exact h.rel_right T₃.rel_contr.symm
lemma of_add_right {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃} (h : AddCond T₁ (T₂ +[h'] T₃)) :
AddCond T₁ T₂ := h.of_add_right'.trans h'.symm
lemma of_add_left {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂}
(h : AddCond (T₁ +[h'] T₂) T₃) : AddCond T₂ T₃ :=
(of_add_right' h.symm).symm
lemma of_add_left' {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂}
(h : AddCond (T₁ +[h'] T₂) T₃) : AddCond T₁ T₃ :=
(of_add_right h.symm).symm
lemma add_left_of_add_right {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃}
(h : AddCond T₁ (T₂ +[h'] T₃)) : AddCond (T₁ +[of_add_right h] T₂) T₃ := by
have h0 := ((of_add_right' h).trans h'.symm)
exact (h'.symm.add_right h0).symm
lemma add_right_of_add_left {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂}
(h : AddCond (T₁ +[h'] T₂) T₃) : AddCond T₁ (T₂ +[of_add_left h] T₃) :=
(add_left (of_add_left h) (of_add_left' h).symm).symm
lemma add_comm {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) :
AddCond (T₁ +[h] T₂) (T₂ +[h.symm] T₁) := by
apply add_right
apply add_left
exact h.symm
end AddCond
@[simp]
lemma add_index (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
(add T₁ T₂ h).index = T₂.index.contr := rfl
@[simp]
lemma add_tensor (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
(add T₁ T₂ h).tensor =
(𝓣.mapIso h.toEquiv h.toEquiv_colorMap T₁.contr.tensor) + T₂.contr.tensor := by rfl
/-- Scalar multiplication commutes with addition. -/
lemma smul_add (r : R) (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
r • (T₁ +[h] T₂) = r • T₁ +[h] r • T₂ := by
refine ext _ _ rfl ?_
simp [add]
rw [tensor_eq_of_eq (smul_contr r T₁), tensor_eq_of_eq (smul_contr r T₂)]
simp only [smul_index, contr_index, Fin.castOrderIso_refl, OrderIso.refl_toEquiv, mapIso_refl,
smul_tensor, AddCond.toEquiv, LinearMapClass.map_smul, LinearEquiv.refl_apply]
lemma add_hasNoContr (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
(T₁ +[h] T₂).index.1.HasNoContr := by
simpa using T₂.index.1.contr_hasNoContr
@[simp]
lemma contr_add (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
(T₁ +[h] T₂).contr = T₁ +[h] T₂ :=
contr_of_hasNoContr (T₁ +[h] T₂) (add_hasNoContr T₁ T₂ h)
@[simp]
lemma contr_add_tensor (T₁ T₂ : 𝓣.TensorIndex) (h : AddCond T₁ T₂) :
(T₁ +[h] T₂).contr.tensor =
𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq (contr_add T₁ T₂ h)])).toEquiv
(index_eq_colorMap_eq (index_eq_of_eq (contr_add T₁ T₂ h))) (T₁ +[h] T₂).tensor :=
tensor_eq_of_eq (contr_add T₁ T₂ h)
lemma add_comm {T₁ T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) : T₁ +[h] T₂ ≈ T₂ +[h.symm] T₁ := by
apply And.intro h.add_comm
intro h
simp only [contr_index, add_index, contr_add_tensor, add_tensor, AddCond.toEquiv, map_add,
mapIso_mapIso]
rw [_root_.add_comm]
congr 1
all_goals
apply congrFun
apply congrArg
congr 1
rw [← PermContr.toEquiv_contr_eq, ← PermContr.toEquiv_contr_eq,
PermContr.toEquiv_trans, PermContr.toEquiv_symm, PermContr.toEquiv_trans]
simp only [IndexListColor.contr_contr]
simp only [IndexListColor.contr_contr]
open AddCond in
lemma add_rel_left {T₁ T₁' T₂ : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₁ ≈ T₁') :
T₁ +[h] T₂ ≈ T₁' +[h.rel_left h'] T₂ := by
apply And.intro (PermContr.refl _)
intro h
simp only [contr_index, add_index, contr_add_tensor, add_tensor, toEquiv, map_add, mapIso_mapIso,
PermContr.toEquiv_refl, Equiv.refl_symm, mapIso_refl, LinearEquiv.refl_apply]
congr 1
rw [h'.to_eq]
simp only [mapIso_mapIso]
congr 1
congr 1
rw [PermContr.toEquiv_symm, ← PermContr.toEquiv_contr_eq, PermContr.toEquiv_trans,
PermContr.toEquiv_trans, PermContr.toEquiv_trans]
simp only [IndexListColor.contr_contr]
open AddCond in
lemma add_rel_right {T₁ T₂ T₂' : 𝓣.TensorIndex} (h : AddCond T₁ T₂) (h' : T₂ ≈ T₂') :
T₁ +[h] T₂ ≈ T₁ +[h.rel_right h'] T₂' :=
(add_comm _).trans ((add_rel_left _ h').trans (add_comm _))
open AddCond in
lemma add_assoc' {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₂ T₃} (h : AddCond T₁ (T₂ +[h'] T₃)) :
T₁ +[h] (T₂ +[h'] T₃) = T₁ +[h'.of_add_right h] T₂ +[h'.add_left_of_add_right h] T₃ := by
refine ext _ _ ?_ ?_
simp only [add_index, IndexListColor.contr_contr]
simp only [add_index, add_tensor, contr_index, toEquiv, contr_add_tensor, map_add, mapIso_mapIso]
rw [_root_.add_assoc]
congr
rw [← PermContr.toEquiv_contr_eq, ← PermContr.toEquiv_contr_eq]
rw [PermContr.toEquiv_trans, PermContr.toEquiv_trans, PermContr.toEquiv_trans]
simp only [IndexListColor.contr_contr]
simp only [IndexListColor.contr_contr]
rw [← PermContr.toEquiv_contr_eq, PermContr.toEquiv_trans]
simp only [IndexListColor.contr_contr]
open AddCond in
lemma add_assoc {T₁ T₂ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ T₂} (h : AddCond (T₁ +[h'] T₂) T₃) :
T₁ +[h'] T₂ +[h] T₃ = T₁ +[h'.add_right_of_add_left h] (T₂ +[h'.of_add_left h] T₃) := by
rw [add_assoc']
/-! TODO: Show that the product is well defined with respect to Rel. -/
/-!
## Product of `TensorIndex` allowed
-/
/-- The condition on two tensors with indices determining if it possible to
take their product.
This condition says that the indices of the two tensors can contract nicely,
after the contraction of indivdual indices has taken place. Note that
it is required to take the contraction of indivdual tensors before taking the product
to ensure that the product is well-defined under the `Rel` equivalence relation.
For example, indices with the same id have dual colors, and no more then two indices
have the same id (after contraction). For example, the product of `ψᵘ¹ᵤ₂ᵘ²` could be taken with
`φᵤ₁ᵤ₃ᵘ³` or `φᵤ₄ᵤ₃ᵘ³` or `φᵤ₁ᵤ₂ᵘ²` or `φᵤ₂ᵤ₁ᵘ¹`
(since contraction is done before taking the product)
but not with `φᵤ₁ᵤ₃ᵘ³` or `φᵤ₁ᵤ₂ᵘ²` or `φᵤ₃ᵤ₂ᵘ²`. -/
def ProdCond (T₁ T₂ : 𝓣.TensorIndex) : Prop :=
IndexListColorProp 𝓣.toTensorColor (T₁.contr.index.1 ++ T₂.contr.index.1)
namespace ProdCond
lemma to_indexListColorProp {T₁ T₂ : 𝓣.TensorIndex} (h : ProdCond T₁ T₂) :
IndexListColorProp 𝓣.toTensorColor (T₁.contr.index.1 ++ T₂.contr.index.1) := h
end ProdCond
/-- The tensor product of two `TensorIndex`. -/
def prod (T₁ T₂ : 𝓣.TensorIndex)
(h : ProdCond T₁ T₂) : 𝓣.TensorIndex where
index := T₁.contr.index.prod T₂.contr.index h.to_indexListColorProp
tensor :=
𝓣.mapIso ((Fin.castOrderIso (IndexListColor.prod_numIndices)).toEquiv.trans
(finSumFinEquiv.symm)).symm
(IndexListColor.prod_colorMap h) <|
𝓣.tensoratorEquiv _ _ (T₁.contr.tensor ⊗ₜ[R] T₂.contr.tensor)
@[simp]
lemma prod_index (T₁ T₂ : 𝓣.TensorIndex) (h : ProdCond T₁ T₂) :
(prod T₁ T₂ h).index = T₁.contr.index.prod T₂.contr.index h.to_indexListColorProp := rfl
end TensorIndex
end
end TensorStructure