139 lines
7.1 KiB
Text
139 lines
7.1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||
/-!
|
||
|
||
## Contraction of specific tensor types
|
||
|
||
-/
|
||
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open OverColor
|
||
open HepLean.Fin
|
||
open TensorProduct
|
||
noncomputable section
|
||
|
||
namespace TensorSpecies
|
||
open TensorTree
|
||
|
||
variable {S : TensorSpecies}
|
||
|
||
/-- Expands the inner contraction of two 2-tensors which are
|
||
tprods in terms of basic categorical
|
||
constructions and fields of the tensor species. -/
|
||
lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
||
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c, c]).left) →
|
||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c, c]).hom i }))
|
||
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)]))
|
||
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c, S.τ c]).left) →
|
||
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c, S.τ c]).hom i }))
|
||
(hx : x = PiTensorProduct.tprod S.k fx)
|
||
(hy : y = PiTensorProduct.tprod S.k fy) :
|
||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||
funext x
|
||
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
||
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
||
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
|
||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))):= by
|
||
subst hx
|
||
subst hy
|
||
rw [Discrete.pairIsoSep_inv_tprod S.FD fx, Discrete.pairIsoSep_inv_tprod S.FD fy]
|
||
change _ = (S.F.map (OverColor.mkIso _).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||
((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom
|
||
((S.contr.app { as := c }).hom (fx (1 : Fin 2) ⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2)))))
|
||
simp only [F_def, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
|
||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, Monoidal.tensorUnit_obj,
|
||
Action.instMonoidalCategory_tensorUnit_V, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||
Function.comp_apply, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, tmul_smul, map_smul]
|
||
conv_lhs =>
|
||
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
|
||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
|
||
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
|
||
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom,
|
||
F_def]
|
||
erw [OverColor.lift.μ_tmul_tprod S.FD]
|
||
rw (config := { transparency := .instances }) [OverColor.lift.map_tprod]
|
||
rw (config := { transparency := .instances }) [contrMap_tprod]
|
||
congr 1
|
||
/- The contraction. -/
|
||
· congr
|
||
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
|
||
Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom,
|
||
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
|
||
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||
rfl
|
||
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
|
||
Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl,
|
||
Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv,
|
||
lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv,
|
||
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
|
||
rfl
|
||
/- The tensor. -/
|
||
· rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul,
|
||
OverColor.lift.map_tprod]
|
||
apply congrArg
|
||
funext k
|
||
match k with
|
||
| (0 : Fin 2) => rfl
|
||
| (1 : Fin 2) => rfl
|
||
|
||
/-- Expands the inner contraction of two 2-tensors in terms of basic categorical
|
||
constructions and fields of the tensor species. -/
|
||
lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
|
||
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])):
|
||
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
|
||
funext x
|
||
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
||
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
||
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
|
||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))):= by
|
||
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
|
||
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
|
||
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
|
||
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom]
|
||
refine PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy
|
||
simp only [Fin.isValue, Nat.reduceAdd, Functor.id_obj, mk_hom, add_tmul,
|
||
map_add, hx, hy])
|
||
intro rx fx
|
||
refine PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp_all only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, mk_hom,
|
||
PiTensorProduct.tprodCoeff_eq_smul_tprod, map_smul, map_add, tmul_add])
|
||
intro ry fy
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
|
||
apply congrArg
|
||
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
|
||
apply congrArg
|
||
simpa using contr_two_two_inner_tprod c (PiTensorProduct.tprod S.k fx) fx
|
||
(PiTensorProduct.tprod S.k fy) fy
|
||
|
||
end TensorSpecies
|
||
|
||
end
|