81 lines
3.4 KiB
Text
81 lines
3.4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||
import HepLean.Tensors.TensorSpecies.ContractLemmas
|
||
/-!
|
||
|
||
## Metrics in tensor trees
|
||
|
||
-/
|
||
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open OverColor
|
||
open HepLean.Fin
|
||
open TensorProduct
|
||
noncomputable section
|
||
|
||
namespace TensorSpecies
|
||
open TensorTree
|
||
|
||
/-- The metric of a tensor species in a `PiTensorProduct`. -/
|
||
def metricTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
|
||
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.metric.app (Discrete.mk c)).hom (1 : S.k))
|
||
|
||
variable {S : TensorSpecies}
|
||
|
||
lemma pairIsoSep_inv_metricTensor (c : S.C) :
|
||
(Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) =
|
||
(S.metric.app (Discrete.mk c)).hom (1 : S.k) := by
|
||
simp [metricTensor]
|
||
erw [Discrete.rep_iso_inv_hom_apply]
|
||
|
||
/-- Contraction of a metric tensor with a metric tensor gives the unit.
|
||
Like `S.contr_metric` but with the braiding appearing on the side of the unit. -/
|
||
lemma contr_metric_braid_unit (c : S.C) : (((S.FD.obj (Discrete.mk c)) ◁
|
||
(λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
|
||
(S.FD.obj (Discrete.mk (S.τ c))))).hom
|
||
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
|
||
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
|
||
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
|
||
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
|
||
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) ⊗ₜ
|
||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor (S.τ c)))))))) =
|
||
(β_ (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk c))).hom.hom
|
||
((S.unit.app (Discrete.mk c)).hom (1 : S.k)) := by
|
||
have hx : Function.Injective (β_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c))) ).hom.hom := by
|
||
change Function.Injective (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).hom
|
||
exact (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).toLinearEquiv.toEquiv.injective
|
||
apply hx
|
||
rw [pairIsoSep_inv_metricTensor, pairIsoSep_inv_metricTensor]
|
||
rw [S.contr_metric c]
|
||
change _ = (β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).inv.hom
|
||
((β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).hom.hom _)
|
||
rw [Discrete.rep_iso_inv_hom_apply]
|
||
|
||
lemma metricTensor_contr_dual_metricTensor_perm_cond (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
|
||
((Sum.elim ![c, c] ![S.τ c, S.τ c] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1) x =
|
||
(![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := by
|
||
intro x
|
||
fin_cases x
|
||
· rfl
|
||
· rfl
|
||
|
||
/-- The contraction of a metric tensor with its dual gives the unit. -/
|
||
lemma metricTensor_contr_dual_metricTensor_eq_unit (c : S.C) :
|
||
{S.metricTensor c | μ ν ⊗ S.metricTensor (S.τ c) | ν ρ}ᵀ.tensor =
|
||
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
||
(metricTensor_contr_dual_metricTensor_perm_cond c)) {S.unitTensor c | μ ρ}ᵀ).tensor := by
|
||
rw [contr_two_two_inner, contr_metric_braid_unit, Discrete.pairIsoSep_β]
|
||
change (S.F.map _ ≫ S.F.map _ ).hom _ = _
|
||
rw [← S.F.map_comp]
|
||
rfl
|
||
|
||
end TensorSpecies
|
||
|
||
end
|