182 lines
6.4 KiB
Text
182 lines
6.4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.PureU1.Basic
|
||
import HepLean.AnomalyCancellation.PureU1.Permutations
|
||
import HepLean.AnomalyCancellation.PureU1.VectorLike
|
||
import HepLean.AnomalyCancellation.PureU1.ConstAbs
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.RepresentationTheory.Basic
|
||
/-!
|
||
# Line in plane condition
|
||
|
||
We say a `LinSol` satisfies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
|
||
`Fin n`, we have
|
||
`S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`.
|
||
|
||
We look at various consequences of this.
|
||
The main reference for this material is
|
||
|
||
- https://arxiv.org/pdf/1912.04804.pdf
|
||
|
||
We will show that `n ≥ 4` the `line in plane` condition on solutions implies the
|
||
`constAbs` condition.
|
||
|
||
-/
|
||
|
||
namespace PureU1
|
||
|
||
open BigOperators
|
||
|
||
variable {n : ℕ}
|
||
|
||
/-- The proposition on three rationals to satisfy the `linInPlane` condition. -/
|
||
def LineInPlaneProp : ℚ × ℚ × ℚ → Prop := fun s =>
|
||
s.1 = s.2.1 ∨ s.1 = - s.2.1 ∨ 2 * s.2.2 + s.1 + s.2.1 = 0
|
||
|
||
/-- The proposition on a `LinSol` to satisfy the `linInPlane` condition. -/
|
||
def LineInPlaneCond (S : (PureU1 (n)).LinSols) : Prop :=
|
||
∀ (i1 i2 i3 : Fin (n)) (_ : i1 ≠ i2) (_ : i2 ≠ i3) (_ : i1 ≠ i3),
|
||
LineInPlaneProp (S.val i1, (S.val i2, S.val i3))
|
||
|
||
lemma lineInPlaneCond_perm {S : (PureU1 (n)).LinSols} (hS : LineInPlaneCond S)
|
||
(M : (FamilyPermutations n).group) :
|
||
LineInPlaneCond ((FamilyPermutations n).linSolRep M S) := by
|
||
intro i1 i2 i3 h1 h2 h3
|
||
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply,
|
||
FamilyPermutations_anomalyFreeLinear_apply]
|
||
refine hS (M.invFun i1) (M.invFun i2) (M.invFun i3) ?_ ?_ ?_
|
||
all_goals simp_all only [ne_eq, Equiv.invFun_as_coe, EmbeddingLike.apply_eq_iff_eq,
|
||
not_false_eq_true]
|
||
|
||
lemma lineInPlaneCond_eq_last' {S : (PureU1 (n.succ.succ)).LinSols} (hS : LineInPlaneCond S)
|
||
(h : ¬ (S.val ((Fin.last n).castSucc))^2 = (S.val ((Fin.last n).succ))^2) :
|
||
(2 - n) * S.val (Fin.last (n + 1)) =
|
||
- (2 - n)* S.val (Fin.castSucc (Fin.last n)) := by
|
||
erw [sq_eq_sq_iff_eq_or_eq_neg] at h
|
||
rw [LineInPlaneCond] at hS
|
||
simp only [LineInPlaneProp] at hS
|
||
simp [not_or] at h
|
||
have h1 (i : Fin n) : S.val i.castSucc.castSucc =
|
||
- (S.val ((Fin.last n).castSucc) + (S.val ((Fin.last n).succ))) / 2 := by
|
||
have h1S := hS (Fin.last n).castSucc ((Fin.last n).succ) i.castSucc.castSucc
|
||
(by simp; rw [Fin.ext_iff]; simp)
|
||
(by simp; rw [Fin.ext_iff]; simp; omega)
|
||
(by simp; rw [Fin.ext_iff]; simp; omega)
|
||
simp_all
|
||
field_simp
|
||
linear_combination h1S
|
||
have h2 := pureU1_last S
|
||
rw [Fin.sum_univ_castSucc] at h2
|
||
simp [h1] at h2
|
||
field_simp at h2
|
||
linear_combination h2
|
||
|
||
lemma lineInPlaneCond_eq_last {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
|
||
(hS : LineInPlaneCond S) : ConstAbsProp ((S.val ((Fin.last n.succ.succ.succ).castSucc)),
|
||
(S.val ((Fin.last n.succ.succ.succ).succ))) := by
|
||
rw [ConstAbsProp]
|
||
by_contra hn
|
||
have h := lineInPlaneCond_eq_last' hS hn
|
||
rw [sq_eq_sq_iff_eq_or_eq_neg] at hn
|
||
simp [or_not] at hn
|
||
have hx : ((2 : ℚ) - ↑(n + 3)) ≠ 0 := by
|
||
rw [Nat.cast_add]
|
||
simp only [Nat.cast_ofNat, ne_eq]
|
||
apply Not.intro
|
||
intro a
|
||
linarith
|
||
have ht : S.val ((Fin.last n.succ.succ.succ).succ) =
|
||
- S.val ((Fin.last n.succ.succ.succ).castSucc) := by
|
||
rw [← mul_right_inj' hx]
|
||
simp [Nat.succ_eq_add_one]
|
||
simp at h
|
||
rw [h]
|
||
ring
|
||
simp_all
|
||
|
||
lemma linesInPlane_eq_sq {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
|
||
(hS : LineInPlaneCond S) : ∀ (i j : Fin n.succ.succ.succ.succ.succ) (_ : i ≠ j),
|
||
ConstAbsProp (S.val i, S.val j) := by
|
||
have hneq : ((Fin.last n.succ.succ.succ).castSucc) ≠ ((Fin.last n.succ.succ.succ).succ) := by
|
||
simp [Fin.ext_iff]
|
||
refine Prop_two ConstAbsProp hneq ?_
|
||
intro M
|
||
exact lineInPlaneCond_eq_last (lineInPlaneCond_perm hS M)
|
||
|
||
theorem linesInPlane_constAbs {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
|
||
(hS : LineInPlaneCond S) : ConstAbs S.val := by
|
||
intro i j
|
||
by_cases hij : i ≠ j
|
||
exact linesInPlane_eq_sq hS i j hij
|
||
simp at hij
|
||
rw [hij]
|
||
|
||
lemma linesInPlane_four (S : (PureU1 4).Sols) (hS : LineInPlaneCond S.1.1) :
|
||
ConstAbsProp (S.val (0 : Fin 4), S.val (1 : Fin 4)) := by
|
||
simp [ConstAbsProp]
|
||
by_contra hn
|
||
have hLin := pureU1_linear S.1.1
|
||
have hcube := pureU1_cube S
|
||
simp at hLin hcube
|
||
rw [Fin.sum_univ_four] at hLin hcube
|
||
rw [sq_eq_sq_iff_eq_or_eq_neg] at hn
|
||
simp [not_or] at hn
|
||
have l012 := hS 0 1 2 (by simp) (by simp) (by simp)
|
||
have l013 := hS 0 1 3 (by simp) (by simp) (by simp)
|
||
have l023 := hS 0 2 3 (by simp) (by simp) (by simp)
|
||
simp_all [LineInPlaneProp]
|
||
have h1 : S.val (2 : Fin 4) = S.val (3 : Fin 4) := by
|
||
linear_combination l012 / 2 + -1 * l013 / 2
|
||
by_cases h2 : S.val (0 : Fin 4) = S.val (2 : Fin 4)
|
||
simp_all
|
||
have h3 : S.val (1 : Fin 4) = - 3 * S.val (2 : Fin 4) := by
|
||
linear_combination l012 + 3 * h1
|
||
rw [← h1, h3] at hcube
|
||
have h4 : S.val (2 : Fin 4) ^ 3 = 0 := by
|
||
linear_combination -1 * hcube / 24
|
||
simp at h4
|
||
simp_all
|
||
by_cases h3 : S.val (0 : Fin 4) = - S.val (2 : Fin 4)
|
||
simp_all
|
||
have h4 : S.val (1 : Fin 4) = - S.val (2 : Fin 4) := by
|
||
linear_combination l012 + h1
|
||
simp_all
|
||
simp_all
|
||
have h4 : S.val (0 : Fin 4) = - 3 * S.val (3 : Fin 4) := by
|
||
linear_combination l023
|
||
have h5 : S.val (1 : Fin 4) = S.val (3 : Fin 4) := by
|
||
linear_combination l013 - 1 * h4
|
||
rw [h4, h5] at hcube
|
||
have h6 : S.val (3 : Fin 4) ^ 3 = 0 := by
|
||
linear_combination -1 * hcube / 24
|
||
simp at h6
|
||
simp_all
|
||
|
||
lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols}
|
||
(hS : LineInPlaneCond S.1.1) : ∀ (i j : Fin 4) (_ : i ≠ j),
|
||
ConstAbsProp (S.val i, S.val j) := by
|
||
refine Prop_two ConstAbsProp (by simp : (0 : Fin 4) ≠ 1) ?_
|
||
intro M
|
||
let S' := (FamilyPermutations 4).solAction.toFun S M
|
||
have hS' : LineInPlaneCond S'.1.1 :=
|
||
(lineInPlaneCond_perm hS M)
|
||
exact linesInPlane_four S' hS'
|
||
|
||
lemma linesInPlane_constAbs_four (S : (PureU1 4).Sols)
|
||
(hS : LineInPlaneCond S.1.1) : ConstAbs S.val := by
|
||
intro i j
|
||
by_cases hij : i ≠ j
|
||
exact linesInPlane_eq_sq_four hS i j hij
|
||
simp at hij
|
||
rw [hij]
|
||
|
||
theorem linesInPlane_constAbs_AF (S : (PureU1 (n.succ.succ.succ.succ)).Sols)
|
||
(hS : LineInPlaneCond S.1.1) : ConstAbs S.val := by
|
||
induction n
|
||
exact linesInPlane_constAbs_four S hS
|
||
exact linesInPlane_constAbs hS
|
||
|
||
end PureU1
|