368 lines
11 KiB
Text
368 lines
11 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.SM.Basic
|
||
import HepLean.AnomalyCancellation.SM.NoGrav.Basic
|
||
import Mathlib.Tactic.FieldSimp
|
||
import Mathlib.Tactic.Linarith
|
||
import Mathlib.NumberTheory.FLT.Basic
|
||
import Mathlib.Algebra.QuadraticDiscriminant
|
||
/-!
|
||
# Parameterizations for solutions to the linear ACCs for 1 family
|
||
|
||
In this file we give two parameterizations
|
||
- `linearParameters` of solutions to the linear ACCs for 1 family
|
||
- `linearParametersQENeqZero` of solutions to the linear ACCs for 1 family with Q and E non-zero
|
||
|
||
These parameterizations are based on:
|
||
https://arxiv.org/abs/1907.00514
|
||
-/
|
||
|
||
universe v u
|
||
namespace SM
|
||
namespace SMNoGrav
|
||
namespace One
|
||
|
||
open SMCharges
|
||
open SMACCs
|
||
open BigOperators
|
||
|
||
/-- The parameters for a linear parameterization to the solution of the linear ACCs. -/
|
||
structure linearParameters where
|
||
/-- The parameter `Q'`. -/
|
||
Q' : ℚ
|
||
/-- The parameter `Y`. -/
|
||
Y : ℚ
|
||
/-- The parameter `E'`. -/
|
||
E' : ℚ
|
||
|
||
namespace linearParameters
|
||
|
||
@[ext]
|
||
lemma ext {S T : linearParameters} (hQ : S.Q' = T.Q') (hY : S.Y = T.Y) (hE : S.E' = T.E') :
|
||
S = T := by
|
||
cases' S
|
||
simp_all only
|
||
|
||
/-- The map from the linear parameters to elements of `(SMNoGrav 1).charges`. -/
|
||
@[simp]
|
||
def asCharges (S : linearParameters) : (SMNoGrav 1).Charges := fun i =>
|
||
match i with
|
||
| (0 : Fin 5) => S.Q'
|
||
| (1 : Fin 5) => S.Y - S.Q'
|
||
| (2 : Fin 5) => - (S.Y + S.Q')
|
||
| (3: Fin 5) => - 3 * S.Q'
|
||
| (4 : Fin 5) => S.E'
|
||
|
||
lemma speciesVal (S : linearParameters) :
|
||
(toSpecies i) S.asCharges (0 : Fin 1) = S.asCharges i := by
|
||
match i with
|
||
| 0 => rfl
|
||
| 1 => rfl
|
||
| 2 => rfl
|
||
| 3 => rfl
|
||
| 4 => rfl
|
||
|
||
/-- The map from the linear paramaters to elements of `(SMNoGrav 1).LinSols`. -/
|
||
def asLinear (S : linearParameters) : (SMNoGrav 1).LinSols :=
|
||
chargeToLinear S.asCharges (by
|
||
simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero,
|
||
Fin.isValue, Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
|
||
erw [speciesVal, speciesVal]
|
||
simp)
|
||
(by
|
||
simp only [accSU3, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero,
|
||
Fin.isValue, Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
|
||
repeat erw [speciesVal]
|
||
simp only [asCharges, neg_add_rev]
|
||
ring)
|
||
|
||
lemma asLinear_val (S : linearParameters) : S.asLinear.val = S.asCharges := by
|
||
rfl
|
||
|
||
lemma cubic (S : linearParameters) :
|
||
accCube (S.asCharges) = - 54 * S.Q'^3 - 18 * S.Q' * S.Y ^ 2 + S.E'^3 := by
|
||
simp only [HomogeneousCubic, accCube, cubeTriLin, TriLinearSymm.toCubic_apply,
|
||
TriLinearSymm.mk₃_toFun_apply_apply]
|
||
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton]
|
||
repeat erw [speciesVal]
|
||
simp only [asCharges, neg_add_rev, neg_mul, mul_neg, neg_neg]
|
||
ring
|
||
|
||
lemma cubic_zero_Q'_zero (S : linearParameters) (hc : accCube (S.asCharges) = 0)
|
||
(h : S.Q' = 0) : S.E' = 0 := by
|
||
rw [cubic, h] at hc
|
||
simp at hc
|
||
exact hc
|
||
|
||
lemma cubic_zero_E'_zero (S : linearParameters) (hc : accCube (S.asCharges) = 0)
|
||
(h : S.E' = 0) : S.Q' = 0 := by
|
||
rw [cubic, h] at hc
|
||
simp at hc
|
||
have h1 : -(54 * S.Q' ^ 3) - 18 * S.Q' * S.Y ^ 2 = - 18 * (3 * S.Q' ^ 2 + S.Y ^ 2) * S.Q' := by
|
||
ring
|
||
rw [h1] at hc
|
||
simp at hc
|
||
cases' hc with hc hc
|
||
have h2 := (add_eq_zero_iff' (by nlinarith) (sq_nonneg S.Y)).mp hc
|
||
simp at h2
|
||
exact h2.1
|
||
exact hc
|
||
|
||
/-- The bijection between the type of linear parameters and `(SMNoGrav 1).LinSols`. -/
|
||
def bijection : linearParameters ≃ (SMNoGrav 1).LinSols where
|
||
toFun S := S.asLinear
|
||
invFun S := ⟨SMCharges.Q S.val (0 : Fin 1), (SMCharges.U S.val (0 : Fin 1) -
|
||
SMCharges.D S.val (0 : Fin 1))/2 ,
|
||
SMCharges.E S.val (0 : Fin 1)⟩
|
||
left_inv S := by
|
||
apply linearParameters.ext
|
||
rfl
|
||
simp only [Fin.isValue]
|
||
repeat erw [speciesVal]
|
||
simp only [asCharges, neg_add_rev]
|
||
ring
|
||
simp only [toSpecies_apply]
|
||
rfl
|
||
right_inv S := by
|
||
simp only [Fin.isValue, toSpecies_apply]
|
||
apply ACCSystemLinear.LinSols.ext
|
||
rw [charges_eq_toSpecies_eq]
|
||
intro i
|
||
rw [asLinear_val]
|
||
funext j
|
||
have hj : j = (0 : Fin 1):= by
|
||
simp only [Fin.isValue]
|
||
ext
|
||
simp
|
||
subst hj
|
||
erw [speciesVal]
|
||
have h1 := SU3Sol S
|
||
simp at h1
|
||
have h2 := SU2Sol S
|
||
simp at h2
|
||
match i with
|
||
| 0 => rfl
|
||
| 1 =>
|
||
field_simp
|
||
linear_combination -(1 * h1)
|
||
| 2 =>
|
||
field_simp
|
||
linear_combination -(1 * h1)
|
||
| 3 =>
|
||
field_simp
|
||
linear_combination -(1 * h2)
|
||
| 4 => rfl
|
||
|
||
/-- The bijection between the linear parameters and `(SMNoGrav 1).LinSols` in the special
|
||
case when Q and E are both not zero. -/
|
||
def bijectionQEZero : {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} ≃
|
||
{S : (SMNoGrav 1).LinSols // Q S.val (0 : Fin 1) ≠ 0 ∧ E S.val (0 : Fin 1) ≠ 0} where
|
||
toFun S := ⟨bijection S, S.2⟩
|
||
invFun S := ⟨bijection.symm S, S.2⟩
|
||
left_inv S := by
|
||
apply Subtype.ext
|
||
exact bijection.left_inv S.1
|
||
right_inv S := by
|
||
apply Subtype.ext
|
||
exact bijection.right_inv S.1
|
||
|
||
lemma grav (S : linearParameters) :
|
||
accGrav S.asCharges = 0 ↔ S.E' = 6 * S.Q' := by
|
||
rw [accGrav]
|
||
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
|
||
repeat erw [speciesVal]
|
||
simp only [asCharges, neg_add_rev, neg_mul, mul_neg]
|
||
ring_nf
|
||
rw [add_comm, add_eq_zero_iff_eq_neg]
|
||
simp
|
||
|
||
end linearParameters
|
||
|
||
/-- The parameters for solutions to the linear ACCs with the condition that Q and E are
|
||
non-zero. -/
|
||
structure linearParametersQENeqZero where
|
||
/-- The parameter `x`. -/
|
||
x : ℚ
|
||
/-- The parameter `v`. -/
|
||
v : ℚ
|
||
/-- The parameter `w`. -/
|
||
w : ℚ
|
||
hx : x ≠ 0
|
||
hvw : v + w ≠ 0
|
||
|
||
namespace linearParametersQENeqZero
|
||
|
||
@[ext]
|
||
lemma ext {S T : linearParametersQENeqZero} (hx : S.x = T.x) (hv : S.v = T.v)
|
||
(hw : S.w = T.w) : S = T := by
|
||
cases' S
|
||
simp_all only
|
||
|
||
/-- A map from `linearParametersQENeqZero` to `linearParameters`. -/
|
||
@[simps!]
|
||
def toLinearParameters (S : linearParametersQENeqZero) :
|
||
{S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} :=
|
||
⟨⟨S.x, 3 * S.x * (S.v - S.w) / (S.v + S.w), - 6 * S.x / (S.v + S.w)⟩,
|
||
by
|
||
apply And.intro S.hx
|
||
simp only [neg_mul, ne_eq, div_eq_zero_iff, neg_eq_zero, mul_eq_zero, OfNat.ofNat_ne_zero,
|
||
false_or]
|
||
rw [not_or]
|
||
exact And.intro S.hx S.hvw⟩
|
||
|
||
/-- A map from `linearParameters` to `linearParametersQENeqZero` in the special case when
|
||
`Q'` and `E'` of the linear parameters are non-zero. -/
|
||
@[simps!]
|
||
def tolinearParametersQNeqZero (S : {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0}) :
|
||
linearParametersQENeqZero :=
|
||
⟨S.1.Q', - (3 * S.1.Q' + S.1.Y) / S.1.E', - (3 * S.1.Q' - S.1.Y)/ S.1.E', S.2.1,
|
||
by
|
||
simp only [ne_eq, neg_add_rev, neg_sub]
|
||
field_simp
|
||
ring_nf
|
||
simp only [neg_eq_zero, mul_eq_zero, OfNat.ofNat_ne_zero, or_false]
|
||
exact S.2⟩
|
||
|
||
/-- A bijection between the type `linearParametersQENeqZero` and linear parameters
|
||
with `Q'` and `E'` non-zero. -/
|
||
@[simps!]
|
||
def bijectionLinearParameters :
|
||
linearParametersQENeqZero ≃ {S : linearParameters // S.Q' ≠ 0 ∧ S.E' ≠ 0} where
|
||
toFun := toLinearParameters
|
||
invFun := tolinearParametersQNeqZero
|
||
left_inv S := by
|
||
have hvw := S.hvw
|
||
have hQ := S.hx
|
||
apply linearParametersQENeqZero.ext
|
||
rfl
|
||
field_simp
|
||
ring
|
||
simp only [tolinearParametersQNeqZero_w, toLinearParameters_coe_Y, toLinearParameters_coe_Q',
|
||
toLinearParameters_coe_E']
|
||
field_simp
|
||
ring
|
||
right_inv S := by
|
||
apply Subtype.ext
|
||
have hQ := S.2.1
|
||
have hE := S.2.2
|
||
apply linearParameters.ext
|
||
rfl
|
||
field_simp
|
||
ring_nf
|
||
field_simp [hQ, hE]
|
||
field_simp
|
||
ring_nf
|
||
field_simp [hQ, hE]
|
||
|
||
/-- The bijection between `linearParametersQENeqZero` and `LinSols` with `Q` and `E` non-zero. -/
|
||
def bijection : linearParametersQENeqZero ≃
|
||
{S : (SMNoGrav 1).LinSols // Q S.val (0 : Fin 1) ≠ 0 ∧ E S.val (0 : Fin 1) ≠ 0} :=
|
||
bijectionLinearParameters.trans (linearParameters.bijectionQEZero)
|
||
|
||
lemma cubic (S : linearParametersQENeqZero) :
|
||
accCube (bijection S).1.val = 0 ↔ S.v ^ 3 + S.w ^ 3 = -1 := by
|
||
erw [linearParameters.cubic]
|
||
simp only [ne_eq, bijectionLinearParameters_apply_coe_Q', neg_mul,
|
||
bijectionLinearParameters_apply_coe_Y, div_pow, bijectionLinearParameters_apply_coe_E']
|
||
have hvw := S.hvw
|
||
have hQ := S.hx
|
||
field_simp
|
||
have h1 : (-(54 * S.x ^ 3 * (S.v + S.w) ^ 2) - 18 * S.x * (3 * S.x * (S.v - S.w)) ^ 2) *
|
||
(S.v + S.w) ^ 3 + (-(6 * S.x)) ^ 3 * (S.v + S.w) ^ 2 =
|
||
- 216 * S.x ^3 * (S.v ^3 + S.w ^3 +1) * (S.v + S.w) ^ 2 := by
|
||
ring
|
||
rw [h1]
|
||
simp_all
|
||
exact add_eq_zero_iff_eq_neg
|
||
|
||
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||
S.v = 0 ∨ S.w = 0 := by
|
||
rw [S.cubic] at h
|
||
have h1 : (-1)^3 = (-1 : ℚ):= by rfl
|
||
rw [← h1] at h
|
||
by_contra hn
|
||
simp [not_or] at hn
|
||
have h2 := FLTThree S.v S.w (-1) hn.1 hn.2 (Ne.symm (ne_of_beq_false (by rfl)))
|
||
exact h2 h
|
||
|
||
lemma cubic_v_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||
(hv : S.v = 0) : S.w = -1 := by
|
||
rw [S.cubic, hv] at h
|
||
simp at h
|
||
have h' : (S.w + 1) * (1 * S.w * S.w + (-1) * S.w + 1) = 0 := by
|
||
ring_nf
|
||
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
|
||
have h'' : (1 * S.w * S.w + (-1) * S.w + 1) ≠ 0 := by
|
||
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.w
|
||
intro s
|
||
by_contra hn
|
||
have h : s ^ 2 < 0 := by
|
||
rw [← hn]
|
||
simp [discrim]
|
||
nlinarith
|
||
simp_all
|
||
exact eq_neg_of_add_eq_zero_left h'
|
||
|
||
lemma cube_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||
(hw : S.w = 0) : S.v = -1 := by
|
||
rw [S.cubic, hw] at h
|
||
simp at h
|
||
have h' : (S.v + 1) * (1 * S.v * S.v + (-1) * S.v + 1) = 0 := by
|
||
ring_nf
|
||
exact add_eq_zero_iff_neg_eq.mpr (id (Eq.symm h))
|
||
have h'' : (1 * S.v * S.v + (-1) * S.v + 1) ≠ 0 := by
|
||
refine quadratic_ne_zero_of_discrim_ne_sq ?_ S.v
|
||
intro s
|
||
by_contra hn
|
||
have h : s ^ 2 < 0 := by
|
||
rw [← hn]
|
||
simp [discrim]
|
||
nlinarith
|
||
simp_all
|
||
exact eq_neg_of_add_eq_zero_left h'
|
||
|
||
lemma cube_w_v (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||
(S.v = -1 ∧ S.w = 0) ∨ (S.v = 0 ∧ S.w = -1) := by
|
||
have h' := cubic_v_or_w_zero S h FLTThree
|
||
cases' h' with hx hx
|
||
simp [hx]
|
||
exact cubic_v_zero S h hx
|
||
simp [hx]
|
||
exact cube_w_zero S h hx
|
||
|
||
lemma grav (S : linearParametersQENeqZero) : accGrav (bijection S).1.val = 0 ↔ S.v + S.w = -1 := by
|
||
erw [linearParameters.grav]
|
||
have hvw := S.hvw
|
||
have hQ := S.hx
|
||
field_simp
|
||
apply Iff.intro
|
||
intro h
|
||
apply (mul_right_inj' hQ).mp
|
||
linear_combination -1 * h / 6
|
||
intro h
|
||
rw [h]
|
||
exact Eq.symm (mul_neg_one (6 * S.x))
|
||
|
||
lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||
accGrav (bijection S).1.val = 0 := by
|
||
rw [grav]
|
||
have h' := cube_w_v S h FLTThree
|
||
cases' h' with h h
|
||
rw [h.1, h.2]
|
||
exact Rat.add_zero (-1)
|
||
rw [h.1, h.2]
|
||
exact Rat.zero_add (-1)
|
||
|
||
end linearParametersQENeqZero
|
||
|
||
end One
|
||
end SMNoGrav
|
||
end SM
|