104 lines
3.2 KiB
Text
104 lines
3.2 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.SM.Basic
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.RepresentationTheory.Basic
|
||
/-!
|
||
# Permutations of SM with no RHN.
|
||
|
||
We define the group of permutations for the SM charges with no RHN.
|
||
|
||
-/
|
||
|
||
universe v u
|
||
|
||
open Nat
|
||
open Finset
|
||
|
||
namespace SM
|
||
|
||
open SMCharges
|
||
open SMACCs
|
||
open BigOperators
|
||
|
||
/-- The group of `Sₙ` permutations for each species. -/
|
||
@[simp]
|
||
def PermGroup (n : ℕ) := ∀ (_ : Fin 5), Equiv.Perm (Fin n)
|
||
|
||
variable {n : ℕ}
|
||
|
||
@[simp]
|
||
instance : Group (PermGroup n) := Pi.group
|
||
|
||
/-- The image of an element of `permGroup n` under the representation on charges. -/
|
||
@[simps!]
|
||
def chargeMap (f : PermGroup n) : (SMCharges n).Charges →ₗ[ℚ] (SMCharges n).Charges where
|
||
toFun S := toSpeciesEquiv.symm (fun i => toSpecies i S ∘ f i)
|
||
map_add' _ _ := rfl
|
||
map_smul' _ _ := rfl
|
||
|
||
/-- The representation of `(permGroup n)` acting on the vector space of charges. -/
|
||
@[simp]
|
||
def repCharges {n : ℕ} : Representation ℚ (PermGroup n) (SMCharges n).Charges where
|
||
toFun f := chargeMap f⁻¹
|
||
map_mul' f g := by
|
||
simp only [PermGroup, mul_inv_rev]
|
||
apply LinearMap.ext
|
||
intro S
|
||
rw [charges_eq_toSpecies_eq]
|
||
intro i
|
||
simp only [chargeMap_apply, Pi.mul_apply, Pi.inv_apply, Equiv.Perm.coe_mul, LinearMap.mul_apply]
|
||
repeat erw [toSMSpecies_toSpecies_inv]
|
||
rfl
|
||
map_one' := by
|
||
apply LinearMap.ext
|
||
intro S
|
||
rw [charges_eq_toSpecies_eq]
|
||
intro i
|
||
erw [toSMSpecies_toSpecies_inv]
|
||
rfl
|
||
|
||
lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
|
||
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
|
||
erw [toSMSpecies_toSpecies_inv]
|
||
|
||
lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
|
||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
|
||
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
|
||
rw [repCharges_toSpecies]
|
||
exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x)
|
||
(fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl)
|
||
|
||
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||
accGrav (repCharges f S) = accGrav S :=
|
||
accGrav_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
|
||
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||
accSU2 (repCharges f S) = accSU2 S :=
|
||
accSU2_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
|
||
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||
accSU3 (repCharges f S) = accSU3 S :=
|
||
accSU3_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
|
||
lemma accYY_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||
accYY (repCharges f S) = accYY S :=
|
||
accYY_ext
|
||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||
|
||
lemma accQuad_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||
accQuad (repCharges f S) = accQuad S :=
|
||
accQuad_ext
|
||
(toSpecies_sum_invariant 2 f S)
|
||
|
||
lemma accCube_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||
accCube (repCharges f S) = accCube S :=
|
||
accCube_ext (fun j => toSpecies_sum_invariant 3 f S j)
|
||
|
||
end SM
|