670 lines
29 KiB
Text
670 lines
29 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.FlavorPhysics.CKMMatrix.Basic
|
||
import HepLean.FlavorPhysics.CKMMatrix.Rows
|
||
import HepLean.FlavorPhysics.CKMMatrix.PhaseFreedom
|
||
import HepLean.FlavorPhysics.CKMMatrix.Invariants
|
||
import HepLean.FlavorPhysics.CKMMatrix.StandardParameterization.Basic
|
||
import Mathlib.Analysis.SpecialFunctions.Complex.Arg
|
||
/-!
|
||
# Standard parameters for the CKM Matrix
|
||
|
||
Given a CKM matrix `V` we can extract four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`.
|
||
These, when used in the standard parameterization return `V` up to equivalence.
|
||
|
||
This leads to the theorem `standParam.exists_for_CKMatrix` which says that up to equivalence every
|
||
CKM matrix can be written using the standard parameterization.
|
||
|
||
-/
|
||
open Matrix Complex
|
||
open ComplexConjugate
|
||
open CKMMatrix
|
||
|
||
noncomputable section
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₁₂` in the
|
||
standard parameterization. --/
|
||
def S₁₂ (V : Quotient CKMMatrixSetoid) : ℝ := VusAbs V / (√ (VudAbs V ^ 2 + VusAbs V ^ 2))
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₁₃` in the
|
||
standard parameterization. --/
|
||
def S₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := VubAbs V
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
|
||
standard parameterization. --/
|
||
def S₂₃ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
||
if VubAbs V = 1 then VcdAbs V
|
||
else VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `θ₁₂` in the
|
||
standard parameterization. --/
|
||
def θ₁₂ (V : Quotient CKMMatrixSetoid) : ℝ := Real.arcsin (S₁₂ V)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `θ₁₃` in the
|
||
standard parameterization. --/
|
||
def θ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.arcsin (S₁₃ V)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `θ₂₃` in the
|
||
standard parameterization. --/
|
||
def θ₂₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.arcsin (S₂₃ V)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₂` in the
|
||
standard parameterization. --/
|
||
def C₁₂ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₁₂ V)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `cos θ₁₃` in the
|
||
standard parameterization. --/
|
||
def C₁₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₁₃ V)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to `sin θ₂₃` in the
|
||
standard parameterization. --/
|
||
def C₂₃ (V : Quotient CKMMatrixSetoid) : ℝ := Real.cos (θ₂₃ V)
|
||
|
||
/-- Given a CKM matrix `V` the real number corresponding to the phase `δ₁₃` in the
|
||
standard parameterization. --/
|
||
def δ₁₃ (V : Quotient CKMMatrixSetoid) : ℝ :=
|
||
arg (Invariant.mulExpδ₁₃ V)
|
||
|
||
section sines
|
||
|
||
lemma S₁₂_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₁₂ V := by
|
||
rw [S₁₂, div_nonneg_iff]
|
||
apply Or.inl
|
||
apply (And.intro (VAbs_ge_zero 0 1 V) (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2)))
|
||
|
||
lemma S₁₃_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₁₃ V :=
|
||
VAbs_ge_zero 0 2 V
|
||
|
||
lemma S₂₃_nonneg (V : Quotient CKMMatrixSetoid) : 0 ≤ S₂₃ V := by
|
||
by_cases ha : VubAbs V = 1
|
||
rw [S₂₃, if_pos ha]
|
||
exact VAbs_ge_zero 1 0 V
|
||
rw [S₂₃, if_neg ha, @div_nonneg_iff]
|
||
apply Or.inl
|
||
apply And.intro (VAbs_ge_zero 1 2 V) (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2))
|
||
|
||
lemma S₁₂_leq_one (V : Quotient CKMMatrixSetoid) : S₁₂ V ≤ 1 := by
|
||
rw [S₁₂, @div_le_one_iff]
|
||
by_cases h1 : √(VudAbs V ^ 2 + VusAbs V ^ 2) = 0
|
||
simp [h1]
|
||
have h2 := le_iff_eq_or_lt.mp (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2))
|
||
have h3 : 0 < √(VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||
cases' h2 with h2 h2
|
||
simp_all
|
||
exact h2
|
||
apply Or.inl
|
||
simp_all
|
||
rw [Real.le_sqrt (VAbs_ge_zero 0 1 V) (le_of_lt h3)]
|
||
simp only [Fin.isValue, le_add_iff_nonneg_left]
|
||
exact sq_nonneg (VAbs 0 0 V)
|
||
|
||
lemma S₁₃_leq_one (V : Quotient CKMMatrixSetoid) : S₁₃ V ≤ 1 :=
|
||
VAbs_leq_one 0 2 V
|
||
|
||
lemma S₂₃_leq_one (V : Quotient CKMMatrixSetoid) : S₂₃ V ≤ 1 := by
|
||
by_cases ha : VubAbs V = 1
|
||
rw [S₂₃, if_pos ha]
|
||
exact VAbs_leq_one 1 0 V
|
||
rw [S₂₃, if_neg ha, @div_le_one_iff]
|
||
by_cases h1 : √(VudAbs V ^ 2 + VusAbs V ^ 2) = 0
|
||
simp [h1]
|
||
have h2 := le_iff_eq_or_lt.mp (Real.sqrt_nonneg (VudAbs V ^ 2 + VusAbs V ^ 2))
|
||
have h3 : 0 < √(VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||
cases' h2 with h2 h2
|
||
simp_all
|
||
exact h2
|
||
apply Or.inl
|
||
simp_all
|
||
rw [Real.le_sqrt (VAbs_ge_zero 1 2 V) (le_of_lt h3)]
|
||
rw [VudAbs_sq_add_VusAbs_sq, ← VcbAbs_sq_add_VtbAbs_sq]
|
||
simp only [Fin.isValue, VcbAbs, VtbAbs, le_add_iff_nonneg_right]
|
||
exact sq_nonneg (VAbs 2 2 V)
|
||
|
||
lemma S₁₂_eq_sin_θ₁₂ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₂ V) = S₁₂ V :=
|
||
Real.sin_arcsin (le_trans (by simp) (S₁₂_nonneg V)) (S₁₂_leq_one V)
|
||
|
||
lemma S₁₃_eq_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₁₃ V) = S₁₃ V :=
|
||
Real.sin_arcsin (le_trans (by simp) (S₁₃_nonneg V)) (S₁₃_leq_one V)
|
||
|
||
lemma S₂₃_eq_sin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Real.sin (θ₂₃ V) = S₂₃ V :=
|
||
Real.sin_arcsin (le_trans (by simp) (S₂₃_nonneg V)) (S₂₃_leq_one V)
|
||
|
||
lemma S₁₂_eq_ℂsin_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.sin (θ₁₂ V) = S₁₂ V :=
|
||
(ofReal_sin _).symm.trans (congrArg ofReal (S₁₂_eq_sin_θ₁₂ V))
|
||
|
||
lemma S₁₃_eq_ℂsin_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.sin (θ₁₃ V) = S₁₃ V :=
|
||
(ofReal_sin _).symm.trans (congrArg ofReal (S₁₃_eq_sin_θ₁₃ V))
|
||
|
||
lemma S₂₃_eq_ℂsin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.sin (θ₂₃ V) = S₂₃ V :=
|
||
(ofReal_sin _).symm.trans (congrArg ofReal (S₂₃_eq_sin_θ₂₃ V))
|
||
|
||
lemma complexAbs_sin_θ₁₂ (V : Quotient CKMMatrixSetoid) :
|
||
Complex.abs (Complex.sin (θ₁₂ V)) = sin (θ₁₂ V):= by
|
||
rw [S₁₂_eq_ℂsin_θ₁₂, Complex.abs_ofReal, ofReal_inj, abs_eq_self]
|
||
exact S₁₂_nonneg _
|
||
|
||
lemma complexAbs_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) :
|
||
Complex.abs (Complex.sin (θ₁₃ V)) = sin (θ₁₃ V):= by
|
||
rw [S₁₃_eq_ℂsin_θ₁₃, Complex.abs_ofReal, ofReal_inj, abs_eq_self]
|
||
exact S₁₃_nonneg _
|
||
|
||
lemma complexAbs_sin_θ₂₃ (V : Quotient CKMMatrixSetoid) :
|
||
Complex.abs (Complex.sin (θ₂₃ V)) = sin (θ₂₃ V):= by
|
||
rw [S₂₃_eq_ℂsin_θ₂₃, Complex.abs_ofReal, ofReal_inj, abs_eq_self]
|
||
exact S₂₃_nonneg _
|
||
|
||
lemma S₁₂_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₁₂ V = 0 := by
|
||
have h1 : 1 - VubAbs V ^ 2 = VudAbs V ^ 2 + VusAbs V ^ 2 := by
|
||
linear_combination - (VAbs_sum_sq_row_eq_one V 0)
|
||
simp [S₁₂, ← h1, ha]
|
||
|
||
lemma S₁₃_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₁₃ V = 1 := by
|
||
rw [S₁₃, ha]
|
||
|
||
lemma S₂₃_of_Vub_eq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : S₂₃ V = VcdAbs V := by
|
||
rw [S₂₃, if_pos ha]
|
||
|
||
lemma S₂₃_of_Vub_neq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V ≠ 1) :
|
||
S₂₃ V = VcbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||
rw [S₂₃, if_neg ha]
|
||
|
||
end sines
|
||
|
||
section cosines
|
||
|
||
lemma C₁₂_eq_ℂcos_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.cos (θ₁₂ V) = C₁₂ V := by
|
||
simp [C₁₂]
|
||
|
||
lemma C₁₃_eq_ℂcos_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.cos (θ₁₃ V) = C₁₃ V := by
|
||
simp [C₁₃]
|
||
|
||
lemma C₂₃_eq_ℂcos_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.cos (θ₂₃ V) = C₂₃ V := by
|
||
simp [C₂₃]
|
||
|
||
lemma complexAbs_cos_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₁₂ V)) =
|
||
cos (θ₁₂ V):= by
|
||
rw [C₁₂_eq_ℂcos_θ₁₂, Complex.abs_ofReal]
|
||
simp only [ofReal_inj, abs_eq_self]
|
||
exact Real.cos_arcsin_nonneg _
|
||
|
||
lemma complexAbs_cos_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₁₃ V)) =
|
||
cos (θ₁₃ V):= by
|
||
rw [C₁₃_eq_ℂcos_θ₁₃, Complex.abs_ofReal]
|
||
simp only [ofReal_inj, abs_eq_self]
|
||
exact Real.cos_arcsin_nonneg _
|
||
|
||
lemma complexAbs_cos_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₂₃ V)) =
|
||
cos (θ₂₃ V):= by
|
||
rw [C₂₃_eq_ℂcos_θ₂₃, Complex.abs_ofReal]
|
||
simp only [ofReal_inj, abs_eq_self]
|
||
exact Real.cos_arcsin_nonneg _
|
||
|
||
lemma S₁₂_sq_add_C₁₂_sq (V : Quotient CKMMatrixSetoid) : S₁₂ V ^ 2 + C₁₂ V ^ 2 = 1 := by
|
||
rw [← S₁₂_eq_sin_θ₁₂ V, C₁₂]
|
||
exact Real.sin_sq_add_cos_sq (θ₁₂ V)
|
||
|
||
lemma S₁₃_sq_add_C₁₃_sq (V : Quotient CKMMatrixSetoid) : S₁₃ V ^ 2 + C₁₃ V ^ 2 = 1 := by
|
||
rw [← S₁₃_eq_sin_θ₁₃ V, C₁₃]
|
||
exact Real.sin_sq_add_cos_sq (θ₁₃ V)
|
||
|
||
lemma S₂₃_sq_add_C₂₃_sq (V : Quotient CKMMatrixSetoid) : S₂₃ V ^ 2 + C₂₃ V ^ 2 = 1 := by
|
||
rw [← S₂₃_eq_sin_θ₂₃ V, C₂₃]
|
||
exact Real.sin_sq_add_cos_sq (θ₂₃ V)
|
||
|
||
lemma C₁₂_of_Vub_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : C₁₂ V = 1 := by
|
||
rw [C₁₂, θ₁₂, Real.cos_arcsin, S₁₂_of_Vub_one ha]
|
||
simp
|
||
|
||
lemma C₁₃_of_Vub_eq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V = 1) : C₁₃ V = 0 := by
|
||
rw [C₁₃, θ₁₃, Real.cos_arcsin, S₁₃, ha]
|
||
simp
|
||
|
||
--rename
|
||
lemma C₁₂_eq_Vud_div_sqrt {V : Quotient CKMMatrixSetoid} (ha : VubAbs V ≠ 1) :
|
||
C₁₂ V = VudAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||
rw [C₁₂, θ₁₂, Real.cos_arcsin, S₁₂, div_pow, Real.sq_sqrt]
|
||
rw [one_sub_div]
|
||
simp only [VudAbs, Fin.isValue, VusAbs, add_sub_cancel_right]
|
||
rw [Real.sqrt_div]
|
||
rw [Real.sqrt_sq]
|
||
exact VAbs_ge_zero 0 0 V
|
||
exact sq_nonneg (VAbs 0 0 V)
|
||
exact VAbsub_neq_zero_Vud_Vus_neq_zero ha
|
||
exact (Left.add_nonneg (sq_nonneg (VAbs 0 0 V)) (sq_nonneg (VAbs 0 1 V)))
|
||
|
||
--rename
|
||
lemma C₁₃_eq_add_sq (V : Quotient CKMMatrixSetoid) : C₁₃ V = √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||
rw [C₁₃, θ₁₃, Real.cos_arcsin, S₁₃]
|
||
have h1 : 1 - VubAbs V ^ 2 = VudAbs V ^ 2 + VusAbs V ^ 2 := by
|
||
linear_combination - (VAbs_sum_sq_row_eq_one V 0)
|
||
rw [h1]
|
||
|
||
lemma C₂₃_of_Vub_neq_one {V : Quotient CKMMatrixSetoid} (ha : VubAbs V ≠ 1) :
|
||
C₂₃ V = VtbAbs V / √ (VudAbs V ^ 2 + VusAbs V ^ 2) := by
|
||
rw [C₂₃, θ₂₃, Real.cos_arcsin, S₂₃_of_Vub_neq_one ha, div_pow, Real.sq_sqrt]
|
||
rw [VudAbs_sq_add_VusAbs_sq, ← VcbAbs_sq_add_VtbAbs_sq]
|
||
rw [one_sub_div]
|
||
simp only [VcbAbs, Fin.isValue, VtbAbs, add_sub_cancel_left]
|
||
rw [Real.sqrt_div (sq_nonneg (VAbs 2 2 V))]
|
||
rw [Real.sqrt_sq (VAbs_ge_zero 2 2 V)]
|
||
rw [VcbAbs_sq_add_VtbAbs_sq, ← VudAbs_sq_add_VusAbs_sq ]
|
||
exact VAbsub_neq_zero_Vud_Vus_neq_zero ha
|
||
exact (Left.add_nonneg (sq_nonneg (VAbs 0 0 V)) (sq_nonneg (VAbs 0 1 V)))
|
||
|
||
end cosines
|
||
|
||
section VAbs
|
||
|
||
-- rename to VudAbs_standard_param
|
||
lemma VudAbs_eq_C₁₂_mul_C₁₃ (V : Quotient CKMMatrixSetoid) : VudAbs V = C₁₂ V * C₁₃ V := by
|
||
by_cases ha : VubAbs V = 1
|
||
change VAbs 0 0 V = C₁₂ V * C₁₃ V
|
||
rw [VAbs_thd_eq_one_fst_eq_zero ha]
|
||
rw [C₁₃, θ₁₃, Real.cos_arcsin, S₁₃, ha]
|
||
simp only [one_pow, sub_self, Real.sqrt_zero, mul_zero]
|
||
rw [C₁₂_eq_Vud_div_sqrt ha, C₁₃, θ₁₃, Real.cos_arcsin, S₁₃]
|
||
have h1 : 1 - VubAbs V ^ 2 = VudAbs V ^ 2 + VusAbs V ^ 2 := by
|
||
linear_combination - (VAbs_sum_sq_row_eq_one V 0)
|
||
rw [h1, mul_comm]
|
||
exact (mul_div_cancel₀ (VudAbs V) (VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero ha)).symm
|
||
|
||
lemma VusAbs_eq_S₁₂_mul_C₁₃ (V : Quotient CKMMatrixSetoid) : VusAbs V = S₁₂ V * C₁₃ V := by
|
||
rw [C₁₃, θ₁₃, Real.cos_arcsin, S₁₂, S₁₃]
|
||
have h1 : 1 - VubAbs V ^ 2 = VudAbs V ^ 2 + VusAbs V ^ 2 := by
|
||
linear_combination - (VAbs_sum_sq_row_eq_one V 0)
|
||
rw [h1]
|
||
rw [mul_comm]
|
||
by_cases ha : VubAbs V = 1
|
||
rw [ha] at h1
|
||
simp only [one_pow, sub_self, Fin.isValue] at h1
|
||
rw [← h1]
|
||
simp only [Real.sqrt_zero, div_zero, mul_zero]
|
||
exact VAbs_thd_eq_one_snd_eq_zero ha
|
||
have h2 := VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero ha
|
||
exact (mul_div_cancel₀ (VusAbs V) h2).symm
|
||
|
||
lemma VubAbs_eq_S₁₃ (V : Quotient CKMMatrixSetoid) : VubAbs V = S₁₃ V := rfl
|
||
|
||
lemma VcbAbs_eq_S₂₃_mul_C₁₃ (V : Quotient CKMMatrixSetoid) : VcbAbs V = S₂₃ V * C₁₃ V := by
|
||
by_cases ha : VubAbs V = 1
|
||
rw [C₁₃_of_Vub_eq_one ha]
|
||
simp only [VcbAbs, Fin.isValue, mul_zero]
|
||
exact VAbs_fst_col_eq_one_snd_eq_zero ha
|
||
rw [S₂₃_of_Vub_neq_one ha, C₁₃_eq_add_sq]
|
||
rw [mul_comm]
|
||
exact (mul_div_cancel₀ (VcbAbs V) (VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero ha)).symm
|
||
|
||
lemma VtbAbs_eq_C₂₃_mul_C₁₃ (V : Quotient CKMMatrixSetoid) : VtbAbs V = C₂₃ V * C₁₃ V := by
|
||
by_cases ha : VubAbs V = 1
|
||
rw [C₁₃_of_Vub_eq_one ha]
|
||
simp only [VtbAbs, Fin.isValue, mul_zero]
|
||
exact VAbs_fst_col_eq_one_thd_eq_zero ha
|
||
rw [C₂₃_of_Vub_neq_one ha, C₁₃_eq_add_sq]
|
||
rw [mul_comm]
|
||
exact (mul_div_cancel₀ (VtbAbs V) (VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero ha)).symm
|
||
|
||
lemma VubAbs_of_cos_θ₁₃_zero {V : Quotient CKMMatrixSetoid} (h1 : Real.cos (θ₁₃ V) = 0) :
|
||
VubAbs V = 1 := by
|
||
rw [θ₁₃, Real.cos_arcsin, ← VubAbs_eq_S₁₃, Real.sqrt_eq_zero] at h1
|
||
have h2 : VubAbs V ^ 2 = 1 := by linear_combination -(1 * h1)
|
||
simp at h2
|
||
cases' h2 with h2 h2
|
||
exact h2
|
||
have h3 := VAbs_ge_zero 0 2 V
|
||
rw [h2] at h3
|
||
simp at h3
|
||
linarith
|
||
simp only [VubAbs, Fin.isValue, sub_nonneg, sq_le_one_iff_abs_le_one]
|
||
rw [_root_.abs_of_nonneg (VAbs_ge_zero 0 2 V)]
|
||
exact VAbs_leq_one 0 2 V
|
||
|
||
lemma Vs_zero_iff_cos_sin_zero (V : CKMMatrix) :
|
||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0
|
||
↔ Real.cos (θ₁₂ ⟦V⟧) = 0 ∨ Real.cos (θ₁₃ ⟦V⟧) = 0 ∨ Real.cos (θ₂₃ ⟦V⟧) = 0 ∨
|
||
Real.sin (θ₁₂ ⟦V⟧) = 0 ∨ Real.sin (θ₁₃ ⟦V⟧) = 0 ∨ Real.sin (θ₂₃ ⟦V⟧) = 0 := by
|
||
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃,
|
||
VtbAbs_eq_C₂₃_mul_C₁₃]
|
||
rw [C₁₂, C₁₃, C₂₃, S₁₂_eq_sin_θ₁₂, S₂₃_eq_sin_θ₂₃, S₁₃_eq_sin_θ₁₃]
|
||
aesop
|
||
|
||
end VAbs
|
||
|
||
namespace standParam
|
||
open Invariant
|
||
|
||
lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ =
|
||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) * cexp (I * δ₁₃) := by
|
||
refine mulExpδ₁₃_eq _ _ _ _ ?_ ?_ ?_ ?_
|
||
rw [S₁₂_eq_sin_θ₁₂]
|
||
exact S₁₂_nonneg _
|
||
exact Real.cos_arcsin_nonneg _
|
||
rw [S₂₃_eq_sin_θ₂₃]
|
||
exact S₂₃_nonneg _
|
||
exact Real.cos_arcsin_nonneg _
|
||
|
||
lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
|
||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0 := by
|
||
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃,
|
||
VtbAbs_eq_C₂₃_mul_C₁₃, ← ofReal_inj,
|
||
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
|
||
simp only [ofReal_mul]
|
||
rw [← S₁₃_eq_ℂsin_θ₁₃, ← S₁₂_eq_ℂsin_θ₁₂, ← S₂₃_eq_ℂsin_θ₂₃,
|
||
← C₁₃_eq_ℂcos_θ₁₃, ← C₂₃_eq_ℂcos_θ₂₃,← C₁₂_eq_ℂcos_θ₁₂]
|
||
rw [mulExpδ₁₃_on_param_δ₁₃]
|
||
simp only [mul_eq_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff,
|
||
ofReal_zero]
|
||
have h1 := exp_ne_zero (I * δ₁₃)
|
||
simp_all
|
||
aesop
|
||
|
||
lemma mulExpδ₁₃_on_param_abs (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||
Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) =
|
||
sin (θ₁₂ ⟦V⟧) * cos (θ₁₃ ⟦V⟧) ^ 2 * sin (θ₂₃ ⟦V⟧) * sin (θ₁₃ ⟦V⟧)
|
||
* cos (θ₁₂ ⟦V⟧) * cos (θ₂₃ ⟦V⟧) := by
|
||
rw [mulExpδ₁₃_on_param_δ₁₃]
|
||
simp [abs_exp]
|
||
rw [complexAbs_sin_θ₁₃, complexAbs_cos_θ₁₃, complexAbs_sin_θ₁₂, complexAbs_cos_θ₁₂,
|
||
complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃]
|
||
|
||
lemma mulExpδ₁₃_on_param_neq_zero_arg (V : CKMMatrix) (δ₁₃ : ℝ)
|
||
(h1 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ ≠ 0) :
|
||
cexp (arg (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * I) =
|
||
cexp (δ₁₃ * I) := by
|
||
have h1a := mulExpδ₁₃_on_param_δ₁₃ V δ₁₃
|
||
have habs := mulExpδ₁₃_on_param_abs V δ₁₃
|
||
have h2 : mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = Complex.abs
|
||
(mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) * exp (δ₁₃ * I) := by
|
||
rw [habs, h1a]
|
||
ring_nf
|
||
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (mulExpδ₁₃
|
||
⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧)] at h2
|
||
have habs_neq_zero :
|
||
(Complex.abs (mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧) : ℂ) ≠ 0 := by
|
||
simp only [ne_eq, ofReal_eq_zero, map_eq_zero]
|
||
exact h1
|
||
rw [← mul_right_inj' habs_neq_zero]
|
||
rw [← h2]
|
||
|
||
lemma on_param_cos_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₁₃ ⟦V⟧) = 0) :
|
||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
have hS13 := congrArg ofReal (S₁₃_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
|
||
simp [← S₁₃_eq_ℂsin_θ₁₃] at hS13
|
||
have hC12 := congrArg ofReal (C₁₂_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
|
||
simp [← C₁₂_eq_ℂcos_θ₁₂] at hC12
|
||
have hS12 := congrArg ofReal (S₁₂_of_Vub_one (VubAbs_of_cos_θ₁₃_zero h))
|
||
simp [← S₁₂_eq_ℂsin_θ₁₂] at hS12
|
||
use 0, 0, 0, δ₁₃, 0, -δ₁₃
|
||
simp [standParam, standParamAsMatrix, h, phaseShift, hS13, hC12, hS12]
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||
rfl
|
||
rfl
|
||
|
||
lemma on_param_cos_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₁₂ ⟦V⟧) = 0) :
|
||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
use 0, δ₁₃, δ₁₃, -δ₁₃, 0, - δ₁₃
|
||
have hb := exp_ne_zero (I * δ₁₃)
|
||
simp [standParam, standParamAsMatrix, h, phaseShift, exp_neg]
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||
apply Or.inr
|
||
rfl
|
||
change _ = _ + _ * 0
|
||
simp only [mul_zero, add_zero, neg_inj]
|
||
field_simp
|
||
ring
|
||
ring_nf
|
||
field_simp
|
||
ring_nf
|
||
change _ = _ + _ * 0
|
||
simp only [mul_zero, add_zero]
|
||
field_simp
|
||
ring
|
||
ring_nf
|
||
field_simp
|
||
|
||
lemma on_param_cos_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₂₃ ⟦V⟧) = 0) :
|
||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
use 0, δ₁₃, 0, 0, 0, - δ₁₃
|
||
have hb := exp_ne_zero (I * δ₁₃)
|
||
simp [standParam, standParamAsMatrix, h, phaseShift, exp_neg]
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||
apply Or.inr
|
||
rfl
|
||
ring_nf
|
||
change _ = _ + _ * 0
|
||
simp only [mul_zero, add_zero]
|
||
ring
|
||
field_simp
|
||
|
||
lemma on_param_sin_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₁₃ ⟦V⟧) = 0) :
|
||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
use 0, 0, 0, 0, 0, 0
|
||
simp [standParam, standParamAsMatrix, h, phaseShift, exp_neg]
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||
apply Or.inr
|
||
rfl
|
||
apply Or.inr
|
||
rfl
|
||
|
||
lemma on_param_sin_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₁₂ ⟦V⟧) = 0) :
|
||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
use 0, δ₁₃, δ₁₃, 0, -δ₁₃, - δ₁₃
|
||
have hb := exp_ne_zero (I * δ₁₃)
|
||
simp [standParam, standParamAsMatrix, h, phaseShift, exp_neg]
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||
apply Or.inr
|
||
rfl
|
||
change _ = _ + _ * 0
|
||
simp only [mul_zero, add_zero, neg_inj]
|
||
ring
|
||
field_simp
|
||
ring_nf
|
||
field_simp
|
||
ring_nf
|
||
change _ = _ + _ * 0
|
||
simp only [mul_zero, add_zero, neg_inj]
|
||
ring_nf
|
||
field_simp
|
||
ring_nf
|
||
field_simp
|
||
|
||
lemma on_param_sin_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₂₃ ⟦V⟧) = 0) :
|
||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
use 0, 0, δ₁₃, 0, 0, - δ₁₃
|
||
have hb := exp_ne_zero (I * δ₁₃)
|
||
simp [standParam, standParamAsMatrix, h, phaseShift, exp_neg]
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [mul_apply, Fin.sum_univ_three, mul_apply, Fin.sum_univ_three]
|
||
apply Or.inr
|
||
rfl
|
||
change _ = _ + _ * 0
|
||
simp only [mul_zero, add_zero, neg_inj]
|
||
ring
|
||
ring
|
||
field_simp
|
||
|
||
lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0 ∨ [V]us ≠ 0)
|
||
(hV : FstRowThdColRealCond V) : V = standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (- arg [V]ub) := by
|
||
have hb' : VubAbs ⟦V⟧ ≠ 1 := by
|
||
rw [ud_us_neq_zero_iff_ub_neq_one] at hb
|
||
simp [VAbs, hb]
|
||
have h1 : ofReal (√(VAbs 0 0 ⟦V⟧ ^ 2 + VAbs 0 1 ⟦V⟧ ^ 2) *
|
||
↑√(VAbs 0 0 ⟦V⟧ ^ 2 + VAbs 0 1 ⟦V⟧ ^ 2)) = ofReal (VAbs 0 0 ⟦V⟧ ^ 2 + VAbs 0 1 ⟦V⟧ ^ 2) := by
|
||
rw [Real.mul_self_sqrt ]
|
||
apply add_nonneg (sq_nonneg _) (sq_nonneg _)
|
||
simp at h1
|
||
have hx := Vabs_sq_add_neq_zero hb
|
||
refine eq_rows V ?_ ?_ hV.2.2.2.2
|
||
funext i
|
||
fin_cases i
|
||
simp only [uRow, Fin.isValue, Fin.zero_eta, cons_val_zero, standParam, standParamAsMatrix,
|
||
ofReal_cos, ofReal_sin, ofReal_neg, mul_neg, neg_mul, neg_neg, cons_val', empty_val',
|
||
cons_val_fin_one, cons_val_one, head_cons, cons_val_two, tail_cons]
|
||
rw [hV.1, VudAbs_eq_C₁₂_mul_C₁₃ ⟦V⟧]
|
||
simp [C₁₂, C₁₃]
|
||
simp [uRow, standParam, standParamAsMatrix]
|
||
rw [hV.2.1, VusAbs_eq_S₁₂_mul_C₁₃ ⟦V⟧, ← S₁₂_eq_sin_θ₁₂ ⟦V⟧, C₁₃]
|
||
simp only [ofReal_mul, ofReal_sin, ofReal_cos]
|
||
simp [uRow, standParam, standParamAsMatrix]
|
||
nth_rewrite 1 [← abs_mul_exp_arg_mul_I (V.1 0 2)]
|
||
rw [show Complex.abs (V.1 0 2) = VubAbs ⟦V⟧ from rfl]
|
||
rw [VubAbs_eq_S₁₃, ← S₁₃_eq_sin_θ₁₃ ⟦V⟧]
|
||
simp only [ofReal_sin, Fin.isValue, mul_eq_mul_left_iff]
|
||
ring_nf
|
||
simp only [true_or]
|
||
funext i
|
||
fin_cases i
|
||
simp [cRow, standParam, standParamAsMatrix]
|
||
rw [cd_of_fstRowThdColRealCond hb hV]
|
||
rw [S₁₂_eq_ℂsin_θ₁₂ ⟦V⟧, S₁₂, C₁₂_eq_ℂcos_θ₁₂ ⟦V⟧, C₁₂_eq_Vud_div_sqrt hb']
|
||
rw [S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧, S₂₃_of_Vub_neq_one hb', C₂₃_eq_ℂcos_θ₂₃ ⟦V⟧,
|
||
C₂₃_of_Vub_neq_one hb', S₁₃_eq_ℂsin_θ₁₃ ⟦V⟧, S₁₃]
|
||
field_simp
|
||
rw [h1]
|
||
simp [sq]
|
||
field_simp
|
||
ring_nf
|
||
simp [cRow, standParam, standParamAsMatrix]
|
||
rw [C₁₂_eq_ℂcos_θ₁₂ ⟦V⟧, C₂₃_eq_ℂcos_θ₂₃ ⟦V⟧, S₁₂_eq_ℂsin_θ₁₂ ⟦V⟧,
|
||
S₁₃_eq_ℂsin_θ₁₃ ⟦V⟧, S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧]
|
||
rw [C₁₂_eq_Vud_div_sqrt hb', C₂₃_of_Vub_neq_one hb', S₁₂, S₁₃, S₂₃_of_Vub_neq_one hb']
|
||
rw [cs_of_fstRowThdColRealCond hb hV]
|
||
field_simp
|
||
rw [h1]
|
||
simp [sq]
|
||
field_simp
|
||
ring_nf
|
||
simp [cRow, standParam, standParamAsMatrix]
|
||
rw [hV.2.2.1]
|
||
rw [VcbAbs_eq_S₂₃_mul_C₁₃ ⟦V⟧, S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧, C₁₃]
|
||
simp
|
||
|
||
lemma eq_standParam_of_ubOnePhaseCond {V : CKMMatrix} (hV : ubOnePhaseCond V) :
|
||
V = standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||
have h1 : VubAbs ⟦V⟧ = 1 := by
|
||
simp [VAbs]
|
||
rw [hV.2.2.2.1]
|
||
simp
|
||
refine eq_rows V ?_ ?_ hV.2.2.2.2.1
|
||
funext i
|
||
fin_cases i
|
||
simp [uRow, standParam, standParamAsMatrix]
|
||
rw [C₁₃_eq_ℂcos_θ₁₃ ⟦V⟧, C₁₃_of_Vub_eq_one h1, hV.1]
|
||
simp only [ofReal_zero, mul_zero]
|
||
simp [uRow, standParam, standParamAsMatrix]
|
||
rw [C₁₃_eq_ℂcos_θ₁₃ ⟦V⟧, C₁₃_of_Vub_eq_one h1, hV.2.1]
|
||
simp only [ofReal_zero, mul_zero]
|
||
simp [uRow, standParam, standParamAsMatrix]
|
||
rw [S₁₃_eq_ℂsin_θ₁₃ ⟦V⟧, S₁₃]
|
||
simp [VAbs]
|
||
rw [hV.2.2.2.1]
|
||
simp only [_root_.map_one, ofReal_one]
|
||
funext i
|
||
fin_cases i
|
||
simp [cRow, standParam, standParamAsMatrix]
|
||
rw [S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧, S₂₃_of_Vub_eq_one h1]
|
||
rw [S₁₂_eq_ℂsin_θ₁₂ ⟦V⟧, S₁₂_of_Vub_one h1]
|
||
rw [C₁₂_eq_ℂcos_θ₁₂ ⟦V⟧, C₁₂_of_Vub_one h1]
|
||
rw [S₁₃_eq_ℂsin_θ₁₃ ⟦V⟧, S₁₃_of_Vub_one h1]
|
||
rw [hV.2.2.2.2.2.1]
|
||
simp only [VcdAbs, Fin.isValue, ofReal_zero, zero_mul, neg_zero, ofReal_one, mul_one, one_mul,
|
||
zero_sub]
|
||
simp [cRow, standParam, standParamAsMatrix]
|
||
rw [S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧, S₂₃_of_Vub_eq_one h1]
|
||
rw [S₁₂_eq_ℂsin_θ₁₂ ⟦V⟧, S₁₂_of_Vub_one h1]
|
||
rw [C₁₂_eq_ℂcos_θ₁₂ ⟦V⟧, C₁₂_of_Vub_one h1]
|
||
rw [S₁₃_eq_ℂsin_θ₁₃ ⟦V⟧, S₁₃_of_Vub_one h1]
|
||
simp only [Fin.isValue, ofReal_one, one_mul, ofReal_zero, mul_one, VcdAbs, zero_mul, sub_zero]
|
||
have h3 : (Real.cos (θ₂₃ ⟦V⟧) : ℂ) = √(1 - S₂₃ ⟦V⟧ ^ 2) := by
|
||
rw [θ₂₃, Real.cos_arcsin]
|
||
simp at h3
|
||
rw [h3, S₂₃_of_Vub_eq_one h1, hV.2.2.2.2.2.2]
|
||
simp [cRow, standParam, standParamAsMatrix]
|
||
rw [C₁₃_eq_ℂcos_θ₁₃ ⟦V⟧, C₁₃_of_Vub_eq_one h1, hV.2.2.1]
|
||
simp
|
||
|
||
theorem exists_δ₁₃ (V : CKMMatrix) :
|
||
∃ (δ₃ : ℝ), V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₃ := by
|
||
obtain ⟨U, hU⟩ := fstRowThdColRealCond_holds_up_to_equiv V
|
||
have hUV : ⟦U⟧ = ⟦V⟧ := (Quotient.eq.mpr (phaseShiftRelation_equiv.symm hU.1))
|
||
by_cases ha : [V]ud ≠ 0 ∨ [V]us ≠ 0
|
||
· have haU : [U]ud ≠ 0 ∨ [U]us ≠ 0 := by -- should be much simplier
|
||
by_contra hn
|
||
simp [not_or] at hn
|
||
have hna : VudAbs ⟦U⟧ = 0 ∧ VusAbs ⟦U⟧ =0 := by
|
||
simp [VAbs]
|
||
exact hn
|
||
rw [hUV] at hna
|
||
simp [VAbs] at hna
|
||
simp_all
|
||
have hU' := eq_standParam_of_fstRowThdColRealCond haU hU.2
|
||
rw [hU'] at hU
|
||
use (- arg ([U]ub))
|
||
rw [← hUV]
|
||
exact hU.1
|
||
· have haU : ¬ ([U]ud ≠ 0 ∨ [U]us ≠ 0) := by -- should be much simplier
|
||
simp [not_or] at ha
|
||
have h1 : VudAbs ⟦U⟧ = 0 ∧ VusAbs ⟦U⟧ = 0 := by
|
||
rw [hUV]
|
||
simp [VAbs]
|
||
exact ha
|
||
simpa [not_or, VAbs] using h1
|
||
have ⟨U2, hU2⟩ := ubOnePhaseCond_hold_up_to_equiv_of_ub_one haU hU.2
|
||
have hUVa2 : V ≈ U2 := phaseShiftRelation_equiv.trans hU.1 hU2.1
|
||
have hUV2 : ⟦U2⟧ = ⟦V⟧ := (Quotient.eq.mpr (phaseShiftRelation_equiv.symm hUVa2))
|
||
have hx := eq_standParam_of_ubOnePhaseCond hU2.2
|
||
use 0
|
||
rw [← hUV2, ← hx]
|
||
exact hUVa2
|
||
|
||
open Invariant in
|
||
theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
||
V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (δ₁₃ ⟦V⟧) := by
|
||
obtain ⟨δ₁₃', hδ₃⟩ := exists_δ₁₃ V
|
||
have hSV := (Quotient.eq.mpr (hδ₃))
|
||
by_cases h : Invariant.mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'⟧ ≠ 0
|
||
have h2 := eq_exp_of_phases (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃'
|
||
(δ₁₃ ⟦V⟧) (by rw [← mulExpδ₁₃_on_param_neq_zero_arg V δ₁₃' h, ← hSV, δ₁₃, Invariant.mulExpδ₁₃])
|
||
rw [h2] at hδ₃
|
||
exact hδ₃
|
||
simp at h
|
||
have h1 : δ₁₃ ⟦V⟧ = 0 := by
|
||
rw [hSV, δ₁₃, h]
|
||
simp
|
||
rw [h1]
|
||
rw [mulExpδ₁₃_on_param_eq_zero_iff, Vs_zero_iff_cos_sin_zero] at h
|
||
refine phaseShiftRelation_equiv.trans hδ₃ ?_
|
||
rcases h with h | h | h | h | h | h
|
||
exact on_param_cos_θ₁₂_eq_zero δ₁₃' h
|
||
exact on_param_cos_θ₁₃_eq_zero δ₁₃' h
|
||
exact on_param_cos_θ₂₃_eq_zero δ₁₃' h
|
||
exact on_param_sin_θ₁₂_eq_zero δ₁₃' h
|
||
exact on_param_sin_θ₁₃_eq_zero δ₁₃' h
|
||
exact on_param_sin_θ₂₃_eq_zero δ₁₃' h
|
||
|
||
theorem exists_for_CKMatrix (V : CKMMatrix) :
|
||
∃ (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ), V ≈ standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ := by
|
||
use θ₁₂ ⟦V⟧, θ₁₃ ⟦V⟧, θ₂₃ ⟦V⟧, δ₁₃ ⟦V⟧
|
||
exact eq_standardParameterization_δ₃ V
|
||
|
||
end standParam
|
||
|
||
open CKMMatrix
|
||
|
||
end
|