314 lines
9.9 KiB
Text
314 lines
9.9 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.Algebra.Module.LinearMap.Basic
|
||
import Mathlib.Data.Fintype.BigOperators
|
||
/-!
|
||
# Linear maps
|
||
|
||
Some definitions and properties of linear, bilinear, and trilinear maps, along with homogeneous
|
||
quadratic and cubic equations.
|
||
|
||
-/
|
||
/-! TODO: Replace the definitions in this file with Mathlib definitions. -/
|
||
|
||
/-- The structure defining a homogeneous quadratic equation. -/
|
||
@[simp]
|
||
def HomogeneousQuadratic (V : Type) [AddCommMonoid V] [Module ℚ V] : Type :=
|
||
V →ₑ[((fun a => a ^ 2) : ℚ → ℚ)] ℚ
|
||
|
||
namespace HomogeneousQuadratic
|
||
|
||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||
|
||
instance instFun : FunLike (HomogeneousQuadratic V) V ℚ where
|
||
coe f := f.toFun
|
||
coe_injective' f g h := by
|
||
cases f
|
||
cases g
|
||
simp_all
|
||
|
||
lemma map_smul (f : HomogeneousQuadratic V) (a : ℚ) (S : V) : f (a • S) = a ^ 2 * f S :=
|
||
f.map_smul' a S
|
||
|
||
end HomogeneousQuadratic
|
||
|
||
/-- The structure of a symmetric bilinear function. -/
|
||
structure BiLinearSymm (V : Type) [AddCommMonoid V] [Module ℚ V] extends V →ₗ[ℚ] V →ₗ[ℚ] ℚ where
|
||
swap' : ∀ S T, toFun S T = toFun T S
|
||
|
||
/-- A symmetric bilinear function. -/
|
||
class IsSymmetric {V : Type} [AddCommMonoid V] [Module ℚ V] (f : V →ₗ[ℚ] V →ₗ[ℚ] ℚ) : Prop where
|
||
swap : ∀ S T, f S T = f T S
|
||
|
||
namespace BiLinearSymm
|
||
open BigOperators
|
||
|
||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||
|
||
instance instFun (V : Type) [AddCommMonoid V] [Module ℚ V] :
|
||
FunLike (BiLinearSymm V) V (V →ₗ[ℚ] ℚ) where
|
||
coe f := f.toFun
|
||
coe_injective' f g h := by
|
||
cases f
|
||
cases g
|
||
simp_all
|
||
|
||
/-- The construction of a symmetric bilinear map from `smul` and `map_add` in the first factor,
|
||
and swap. -/
|
||
@[simps!]
|
||
def mk₂ (f : V × V → ℚ) (map_smul : ∀ a S T, f (a • S, T) = a * f (S, T))
|
||
(map_add : ∀ S1 S2 T, f (S1 + S2, T) = f (S1, T) + f (S2, T))
|
||
(swap : ∀ S T, f (S, T) = f (T, S)) : BiLinearSymm V where
|
||
toFun := fun S => {
|
||
toFun := fun T => f (S, T)
|
||
map_add' := by
|
||
intro T1 T2
|
||
simp only
|
||
rw [swap, map_add]
|
||
exact Mathlib.Tactic.LinearCombination.add_pf (swap T1 S) (swap T2 S)
|
||
map_smul' := by
|
||
intro a T
|
||
simp only [eq_ratCast, Rat.cast_eq_id, id_eq, smul_eq_mul]
|
||
rw [swap, map_smul]
|
||
exact congrArg (HMul.hMul a) (swap T S)
|
||
}
|
||
map_smul' := fun a S => LinearMap.ext fun T => map_smul a S T
|
||
map_add' := fun S1 S2 => LinearMap.ext fun T => map_add S1 S2 T
|
||
swap' := swap
|
||
|
||
lemma map_smul₁ (f : BiLinearSymm V) (a : ℚ) (S T : V) : f (a • S) T = a * f S T := by
|
||
erw [f.map_smul a S]
|
||
rfl
|
||
|
||
lemma swap (f : BiLinearSymm V) (S T : V) : f S T = f T S :=
|
||
f.swap' S T
|
||
|
||
lemma map_smul₂ (f : BiLinearSymm V) (a : ℚ) (S : V) (T : V) : f S (a • T) = a * f S T := by
|
||
rw [f.swap, f.map_smul₁, f.swap]
|
||
|
||
lemma map_add₁ (f : BiLinearSymm V) (S1 S2 T : V) : f (S1 + S2) T = f S1 T + f S2 T := by
|
||
erw [f.map_add]
|
||
rfl
|
||
|
||
lemma map_add₂ (f : BiLinearSymm V) (S : V) (T1 T2 : V) :
|
||
f S (T1 + T2) = f S T1 + f S T2 := by
|
||
rw [f.swap, f.map_add₁, f.swap T1 S, f.swap T2 S]
|
||
|
||
/-- Fixing the second input vectors, the resulting linear map. -/
|
||
def toLinear₁ (f : BiLinearSymm V) (T : V) : V →ₗ[ℚ] ℚ where
|
||
toFun S := f S T
|
||
map_add' S1 S2 := map_add₁ f S1 S2 T
|
||
map_smul' a S := by
|
||
simp only [f.map_smul₁]
|
||
rfl
|
||
|
||
lemma toLinear₁_apply (f : BiLinearSymm V) (S T : V) : f S T = f.toLinear₁ T S := rfl
|
||
|
||
lemma map_sum₁ {n : ℕ} (f : BiLinearSymm V) (S : Fin n → V) (T : V) :
|
||
f (∑ i, S i) T = ∑ i, f (S i) T := by
|
||
rw [f.toLinear₁_apply]
|
||
rw [map_sum]
|
||
rfl
|
||
|
||
lemma map_sum₂ {n : ℕ} (f : BiLinearSymm V) (S : Fin n → V) (T : V) :
|
||
f T (∑ i, S i) = ∑ i, f T (S i) := by
|
||
rw [swap, map_sum₁]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
rw [swap]
|
||
|
||
/-- The homogenous quadratic equation obtainable from a bilinear function. -/
|
||
@[simps!]
|
||
def toHomogeneousQuad {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||
(τ : BiLinearSymm V) : HomogeneousQuadratic V where
|
||
toFun S := τ S S
|
||
map_smul' a S := by
|
||
simp only
|
||
rw [τ.map_smul₁, τ.map_smul₂]
|
||
ring_nf
|
||
rfl
|
||
|
||
lemma toHomogeneousQuad_add {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||
(τ : BiLinearSymm V) (S T : V) :
|
||
τ.toHomogeneousQuad (S + T) = τ.toHomogeneousQuad S +
|
||
τ.toHomogeneousQuad T + 2 * τ S T := by
|
||
simp [toHomogeneousQuad_apply]
|
||
rw [τ.map_add₁, τ.map_add₁, τ.swap T S]
|
||
ring
|
||
|
||
end BiLinearSymm
|
||
|
||
/-- The structure of a homogeneous cubic equation. -/
|
||
@[simp]
|
||
def HomogeneousCubic (V : Type) [AddCommMonoid V] [Module ℚ V] : Type :=
|
||
V →ₑ[((fun a => a ^ 3) : ℚ → ℚ)] ℚ
|
||
|
||
namespace HomogeneousCubic
|
||
|
||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||
|
||
instance instFun : FunLike (HomogeneousCubic V) V ℚ where
|
||
coe f := f.toFun
|
||
coe_injective' f g h := by
|
||
cases f
|
||
cases g
|
||
simp_all
|
||
|
||
lemma map_smul (f : HomogeneousCubic V) (a : ℚ) (S : V) : f (a • S) = a ^ 3 * f S :=
|
||
f.map_smul' a S
|
||
|
||
end HomogeneousCubic
|
||
|
||
/-- The structure of a symmetric trilinear function. -/
|
||
structure TriLinearSymm (V : Type) [AddCommMonoid V] [Module ℚ V] extends
|
||
V →ₗ[ℚ] V →ₗ[ℚ] V →ₗ[ℚ] ℚ where
|
||
swap₁' : ∀ S T L, toFun S T L = toFun T S L
|
||
swap₂' : ∀ S T L, toFun S T L = toFun S L T
|
||
|
||
namespace TriLinearSymm
|
||
open BigOperators
|
||
variable {V : Type} [AddCommMonoid V] [Module ℚ V]
|
||
|
||
instance instFun : FunLike (TriLinearSymm V) V (V →ₗ[ℚ] V →ₗ[ℚ] ℚ) where
|
||
coe f := f.toFun
|
||
coe_injective' f g h := by
|
||
cases f
|
||
cases g
|
||
simp_all
|
||
|
||
/-- The construction of a symmetric trilinear map from `smul` and `map_add` in the first factor,
|
||
and two swap. -/
|
||
@[simps!]
|
||
def mk₃ (f : V × V × V→ ℚ) (map_smul : ∀ a S T L, f (a • S, T, L) = a * f (S, T, L))
|
||
(map_add : ∀ S1 S2 T L, f (S1 + S2, T, L) = f (S1, T, L) + f (S2, T, L))
|
||
(swap₁ : ∀ S T L, f (S, T, L) = f (T, S, L))
|
||
(swap₂ : ∀ S T L, f (S, T, L) = f (S, L, T)) : TriLinearSymm V where
|
||
toFun := fun S => (BiLinearSymm.mk₂ (fun T => f (S, T))
|
||
(by
|
||
intro a T L
|
||
simp only
|
||
rw [swap₁, map_smul, swap₁])
|
||
(by
|
||
intro S1 S2 T
|
||
simp only
|
||
rw [swap₁, map_add, swap₁, swap₁ S2 S T])
|
||
(by
|
||
intro L T
|
||
simp only
|
||
rw [swap₂])).toLinearMap
|
||
map_add' S1 S2 := by
|
||
apply LinearMap.ext
|
||
intro T
|
||
apply LinearMap.ext
|
||
intro S
|
||
simp [BiLinearSymm.mk₂, map_add]
|
||
map_smul' a S := by
|
||
apply LinearMap.ext
|
||
intro T
|
||
apply LinearMap.ext
|
||
intro L
|
||
simp [BiLinearSymm.mk₂, map_smul]
|
||
swap₁' := swap₁
|
||
swap₂' := swap₂
|
||
|
||
lemma swap₁ (f : TriLinearSymm V) (S T L : V) : f S T L = f T S L :=
|
||
f.swap₁' S T L
|
||
|
||
lemma swap₂ (f : TriLinearSymm V) (S T L : V) : f S T L = f S L T :=
|
||
f.swap₂' S T L
|
||
|
||
lemma swap₃ (f : TriLinearSymm V) (S T L : V) : f S T L = f L T S := by
|
||
rw [f.swap₁, f.swap₂, f.swap₁]
|
||
|
||
lemma map_smul₁ (f : TriLinearSymm V) (a : ℚ) (S T L : V) :
|
||
f (a • S) T L = a * f S T L := by
|
||
erw [f.map_smul a S]
|
||
rfl
|
||
|
||
lemma map_smul₂ (f : TriLinearSymm V) (S : V) (a : ℚ) (T L : V) :
|
||
f S (a • T) L = a * f S T L := by
|
||
rw [f.swap₁, f.map_smul₁, f.swap₁]
|
||
|
||
lemma map_smul₃ (f : TriLinearSymm V) (S T : V) (a : ℚ) (L : V) :
|
||
f S T (a • L) = a * f S T L := by
|
||
rw [f.swap₃, f.map_smul₁, f.swap₃]
|
||
|
||
lemma map_add₁ (f : TriLinearSymm V) (S1 S2 T L : V) :
|
||
f (S1 + S2) T L = f S1 T L + f S2 T L := by
|
||
erw [f.map_add]
|
||
rfl
|
||
|
||
lemma map_add₂ (f : TriLinearSymm V) (S T1 T2 L : V) :
|
||
f S (T1 + T2) L = f S T1 L + f S T2 L := by
|
||
rw [f.swap₁, f.map_add₁, f.swap₁ S T1, f.swap₁ S T2]
|
||
|
||
lemma map_add₃ (f : TriLinearSymm V) (S T L1 L2 : V) :
|
||
f S T (L1 + L2) = f S T L1 + f S T L2 := by
|
||
rw [f.swap₃, f.map_add₁, f.swap₃, f.swap₃ L2 T S]
|
||
|
||
/-- Fixing the second and third input vectors, the resulting linear map. -/
|
||
def toLinear₁ (f : TriLinearSymm V) (T L : V) : V →ₗ[ℚ] ℚ where
|
||
toFun S := f S T L
|
||
map_add' S1 S2 := by
|
||
simp only [f.map_add₁]
|
||
map_smul' a S := by
|
||
simp only [f.map_smul₁]
|
||
rfl
|
||
|
||
lemma toLinear₁_apply (f : TriLinearSymm V) (S T L : V) : f S T L = f.toLinear₁ T L S := rfl
|
||
|
||
lemma map_sum₁ {n : ℕ} (f : TriLinearSymm V) (S : Fin n → V) (T : V) (L : V) :
|
||
f (∑ i, S i) T L = ∑ i, f (S i) T L := by
|
||
rw [f.toLinear₁_apply]
|
||
rw [map_sum]
|
||
rfl
|
||
|
||
lemma map_sum₂ {n : ℕ} (f : TriLinearSymm V) (S : Fin n → V) (T : V) (L : V) :
|
||
f T (∑ i, S i) L = ∑ i, f T (S i) L := by
|
||
rw [swap₁, map_sum₁]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
rw [swap₁]
|
||
|
||
lemma map_sum₃ {n : ℕ} (f : TriLinearSymm V) (S : Fin n → V) (T : V) (L : V) :
|
||
f T L (∑ i, S i) = ∑ i, f T L (S i) := by
|
||
rw [swap₃, map_sum₁]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
rw [swap₃]
|
||
|
||
lemma map_sum₁₂₃ {n1 n2 n3 : ℕ} (f : TriLinearSymm V) (S : Fin n1 → V)
|
||
(T : Fin n2 → V) (L : Fin n3 → V) :
|
||
f (∑ i, S i) (∑ i, T i) (∑ i, L i) = ∑ i, ∑ k, ∑ l, f (S i) (T k) (L l) := by
|
||
rw [map_sum₁]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
rw [map_sum₂]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
rw [map_sum₃]
|
||
|
||
/-- The homogenous cubic equation obtainable from a symmetric trilinear function. -/
|
||
@[simps!]
|
||
def toCubic {charges : Type} [AddCommMonoid charges] [Module ℚ charges]
|
||
(τ : TriLinearSymm charges) : HomogeneousCubic charges where
|
||
toFun S := τ S S S
|
||
map_smul' a S := by
|
||
simp only [smul_eq_mul]
|
||
rw [τ.map_smul₁, τ.map_smul₂, τ.map_smul₃]
|
||
ring
|
||
|
||
lemma toCubic_add {charges : Type} [AddCommMonoid charges] [Module ℚ charges]
|
||
(τ : TriLinearSymm charges) (S T : charges) :
|
||
τ.toCubic (S + T) = τ.toCubic S +
|
||
τ.toCubic T + 3 * τ S S T + 3 * τ T T S := by
|
||
simp only [HomogeneousCubic, toCubic_apply]
|
||
rw [τ.map_add₁, τ.map_add₂, τ.map_add₂, τ.map_add₃, τ.map_add₃, τ.map_add₃, τ.map_add₃]
|
||
rw [τ.swap₂ S T S, τ.swap₁ T S S, τ.swap₂ S T S, τ.swap₂ T S T, τ.swap₁ S T T, τ.swap₂ T S T]
|
||
ring
|
||
|
||
end TriLinearSymm
|