251 lines
8.2 KiB
Text
251 lines
8.2 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Algebra.QuadraticDiscriminant
|
||
import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
|
||
/-!
|
||
# The potential of the Higgs field
|
||
|
||
We define the potential of the Higgs field.
|
||
|
||
We show that the potential is a smooth function on spacetime.
|
||
|
||
-/
|
||
|
||
noncomputable section
|
||
|
||
namespace StandardModel
|
||
|
||
namespace HiggsField
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
open SpaceTime
|
||
|
||
/-!
|
||
|
||
## The Higgs potential
|
||
|
||
-/
|
||
|
||
/-- The Higgs potential of the form `- μ² * |φ|² + 𝓵 * |φ|⁴`. -/
|
||
@[simp]
|
||
def potential (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||
- μ2 * ‖φ‖_H ^ 2 x + 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
|
||
|
||
/-!
|
||
|
||
## Smoothness of the potential
|
||
|
||
-/
|
||
|
||
lemma potential_smooth (μSq lambda : ℝ) (φ : HiggsField) :
|
||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||
simp only [potential, normSq, neg_mul]
|
||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||
|
||
namespace potential
|
||
/-!
|
||
|
||
## Basic properties
|
||
|
||
-/
|
||
|
||
lemma complete_square (μ2 𝓵 : ℝ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||
potential μ2 𝓵 φ x = 𝓵 * (‖φ‖_H ^ 2 x - μ2 / (2 * 𝓵)) ^ 2 - μ2 ^ 2 / (4 * 𝓵) := by
|
||
simp only [potential]
|
||
field_simp
|
||
ring
|
||
|
||
/-!
|
||
|
||
## Boundness of the potential
|
||
|
||
-/
|
||
|
||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||
def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
||
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
|
||
|
||
/-! TODO: Show when 𝓵 < 0, the potential is not bounded. -/
|
||
|
||
section lowerBound
|
||
/-!
|
||
|
||
## Lower bound on potential
|
||
|
||
-/
|
||
|
||
variable {𝓵 : ℝ}
|
||
variable (μ2 : ℝ)
|
||
variable (h𝓵 : 0 < 𝓵)
|
||
|
||
/-- The second term of the potential is non-negative. -/
|
||
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
|
||
rw [mul_nonneg_iff]
|
||
apply Or.inl
|
||
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
|
||
and_self]
|
||
|
||
lemma as_quad (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) :
|
||
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
|
||
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
|
||
ring
|
||
|
||
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
|
||
lemma discrim_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||
0 ≤ discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) := by
|
||
have h1 := as_quad μ2 𝓵 φ x
|
||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x+ - μ2)
|
||
· exact ne_of_gt h𝓵
|
||
|
||
lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
|
||
(hV : potential μ2 𝓵 φ x = 0) : φ x = 0 ∨ ‖φ‖_H ^ 2 x = μ2 / 𝓵 := by
|
||
have h1 := as_quad μ2 𝓵 φ x
|
||
rw [hV] at h1
|
||
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
|
||
linear_combination h1
|
||
simp at h2
|
||
cases' h2 with h2 h2
|
||
simp_all
|
||
apply Or.inr
|
||
field_simp at h2 ⊢
|
||
ring_nf
|
||
linear_combination h2
|
||
|
||
lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
||
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
|
||
cases' (eq_zero_at μ2 h𝓵 φ x hV) with h1 h1
|
||
exact h1
|
||
by_cases hμSqZ : μ2 = 0
|
||
simpa [hμSqZ] using h1
|
||
refine ((?_ : ¬ 0 ≤ μ2 / 𝓵) (?_)).elim
|
||
· simp_all [div_nonneg_iff]
|
||
intro h
|
||
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμ2 hμSqZ)
|
||
· rw [← h1]
|
||
exact normSq_nonneg φ x
|
||
|
||
lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
|
||
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
|
||
have h1 := discrim_nonneg μ2 h𝓵 φ x
|
||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||
ring_nf at h1
|
||
rw [← neg_le_iff_add_nonneg'] at h1
|
||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
|
||
have h2 := (div_le_iff' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||
ring_nf at h2 ⊢
|
||
exact h2
|
||
|
||
lemma bounded_below_of_μSq_nonpos {μ2 : ℝ}
|
||
(hμSq : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) : 0 ≤ potential μ2 𝓵 φ x := by
|
||
refine add_nonneg ?_ (snd_term_nonneg h𝓵 φ x)
|
||
field_simp [mul_nonpos_iff]
|
||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||
|
||
end lowerBound
|
||
|
||
section MinimumOfPotential
|
||
variable {𝓵 : ℝ}
|
||
variable (μ2 : ℝ)
|
||
variable (h𝓵 : 0 < 𝓵)
|
||
|
||
/-!
|
||
|
||
## Minima of potential
|
||
|
||
-/
|
||
|
||
lemma discrim_eq_zero_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
|
||
rw [discrim, hV]
|
||
field_simp
|
||
|
||
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||
‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) := by
|
||
have h1 := as_quad μ2 𝓵 φ x
|
||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||
(discrim_eq_zero_of_eq_bound μ2 h𝓵 φ x hV)] at h1
|
||
simp_rw [h1, neg_neg]
|
||
exact ne_of_gt h𝓵
|
||
|
||
lemma eq_bound_iff (φ : HiggsField) (x : SpaceTime) :
|
||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
|
||
Iff.intro (normSq_of_eq_bound μ2 h𝓵 φ x)
|
||
(fun h ↦ by
|
||
rw [potential, h]
|
||
field_simp
|
||
ring_nf)
|
||
|
||
lemma eq_bound_iff_of_μSq_nonpos {μ2 : ℝ}
|
||
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) :
|
||
potential μ2 𝓵 φ x = 0 ↔ φ x = 0 :=
|
||
Iff.intro (fun h ↦ eq_zero_at_of_μSq_nonpos h𝓵 hμ2 φ x h)
|
||
(fun h ↦ by simp [potential, h])
|
||
|
||
lemma eq_bound_IsMinOn (φ : HiggsField) (x : SpaceTime)
|
||
(hv : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
|
||
rw [isMinOn_univ_iff]
|
||
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
|
||
exact fun (φ', x') ↦ bounded_below μ2 h𝓵 φ' x'
|
||
|
||
lemma eq_bound_IsMinOn_of_μSq_nonpos {μ2 : ℝ}
|
||
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) (hv : potential μ2 𝓵 φ x = 0) :
|
||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
|
||
rw [isMinOn_univ_iff]
|
||
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
|
||
exact fun (φ', x') ↦ bounded_below_of_μSq_nonpos h𝓵 hμ2 φ' x'
|
||
|
||
lemma bound_reached_of_μSq_nonneg {μ2 : ℝ} (hμ2 : 0 ≤ μ2) :
|
||
∃ (φ : HiggsField) (x : SpaceTime),
|
||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) := by
|
||
use HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0], 0
|
||
refine (eq_bound_iff μ2 h𝓵 (HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0]) 0).mpr ?_
|
||
simp only [normSq, HiggsVec.toField, ContMDiffSection.coeFn_mk, PiLp.norm_sq_eq_of_L2,
|
||
Nat.succ_eq_add_one, Nat.reduceAdd, norm_eq_abs, Fin.sum_univ_two, Fin.isValue, cons_val_zero,
|
||
abs_ofReal, _root_.sq_abs, cons_val_one, head_cons, map_zero, ne_eq, OfNat.ofNat_ne_zero,
|
||
not_false_eq_true, zero_pow, add_zero]
|
||
field_simp [mul_pow]
|
||
|
||
lemma IsMinOn_iff_of_μSq_nonneg {μ2 : ℝ} (hμ2 : 0 ≤ μ2) :
|
||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔
|
||
‖φ‖_H ^ 2 x = μ2 /(2 * 𝓵) := by
|
||
apply Iff.intro <;> rw [← eq_bound_iff μ2 h𝓵 φ]
|
||
· intro h
|
||
obtain ⟨φm, xm, hφ⟩ := bound_reached_of_μSq_nonneg h𝓵 hμ2
|
||
have hm := isMinOn_univ_iff.mp h (φm, xm)
|
||
simp only at hm
|
||
rw [hφ] at hm
|
||
exact (Real.partialOrder.le_antisymm _ _ (bounded_below μ2 h𝓵 φ x) hm).symm
|
||
· exact eq_bound_IsMinOn μ2 h𝓵 φ x
|
||
|
||
lemma IsMinOn_iff_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0) :
|
||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔ φ x = 0 := by
|
||
apply Iff.intro <;> rw [← eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 φ]
|
||
· intro h
|
||
have h0 := isMinOn_univ_iff.mp h 0
|
||
have h1 := bounded_below_of_μSq_nonpos h𝓵 hμ2 φ x
|
||
simp only at h0
|
||
rw [(eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 0 0).mpr (by rfl)] at h0
|
||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||
· exact eq_bound_IsMinOn_of_μSq_nonpos h𝓵 hμ2 φ x
|
||
|
||
end MinimumOfPotential
|
||
|
||
end potential
|
||
|
||
end HiggsField
|
||
|
||
end StandardModel
|
||
end
|