PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/StaticWickTheorem.lean
2025-02-03 11:05:43 +00:00

112 lines
4.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.StaticContract
import HepLean.PerturbationTheory.WicksTheorem
import HepLean.Meta.Remark.Basic
/-!
# Static Wick's theorem
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldOpFreeAlgebra
open HepLean.List
open WickContraction
open FieldStatistic
namespace FieldOpAlgebra
lemma static_wick_theorem_nil : ofFieldOpList [] = ∑ (φsΛ : WickContraction [].length),
φsΛ.sign (𝓕 := 𝓕) • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) := by
simp only [ofFieldOpList, ofStateList_nil, map_one, List.length_nil]
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
simp [sign, empty, staticContract]
/--
The static Wicks theorem states that
`φ₀…φₙ` is equal to the sum of
`φsΛ.1.sign • φsΛ.1.staticContract * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)`
over all Wick contraction `φsΛ`.
This is compared to the ordinary Wicks theorem in which `staticContract` is replaced with
`timeContract`.
-/
theorem static_wick_theorem : (φs : List 𝓕.States) →
ofFieldOpList φs = ∑ (φsΛ : WickContraction φs.length),
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
| [] => static_wick_theorem_nil
| φ :: φs => by
rw [ofFieldOpList_cons, static_wick_theorem φs]
rw [show (φ :: φs) = φs.insertIdx (⟨0, Nat.zero_lt_succ φs.length⟩ : Fin φs.length.succ) φ
from rfl]
conv_rhs => rw [insertLift_sum]
rw [Finset.mul_sum]
apply Finset.sum_congr rfl
intro c _
trans (sign φs c • ↑c.staticContract * (ofFieldOp φ * normalOrder (ofFieldOpList [c]ᵘᶜ)))
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center _)
(c.staticContract).2 c.sign)
conv_rhs => rw [← mul_assoc, ← ht]
simp [mul_assoc]
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum]
rw [Finset.mul_sum]
rw [uncontractedStatesEquiv_list_sum]
refine Finset.sum_congr rfl (fun n _ => ?_)
match n with
| none =>
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, Nat.succ_eq_add_one,
Fin.zero_eta, Fin.val_zero, List.insertIdx_zero, staticContract_insertAndContract_none,
insertAndContract_uncontractedList_none_zero]
erw [sign_insert_none_zero]
rfl
| some n =>
simp only [Algebra.smul_mul_assoc, Nat.succ_eq_add_one, Fin.zero_eta, Fin.val_zero,
List.insertIdx_zero]
rw [normalOrder_uncontracted_some]
simp only [← mul_assoc]
rw [← smul_mul_assoc]
conv_rhs => rw [← smul_mul_assoc]
congr 1
rw [staticConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
swap
· simp
rw [smul_smul]
by_cases hn : GradingCompliant φs c ∧ (𝓕|>ₛφ) = (𝓕|>ₛ φs[n.1])
· congr 1
swap
· have h1 := c.staticContract.2
rw [@Subalgebra.mem_center_iff] at h1
rw [h1]
erw [sign_insert_some]
rw [mul_assoc, mul_comm c.sign, ← mul_assoc]
rw [signInsertSome_mul_filter_contracted_of_not_lt]
simp only [instCommGroup.eq_1, Fin.zero_succAbove, Fin.not_lt_zero, Finset.filter_False,
ofFinset_empty, map_one, one_mul]
simp only [Fin.zero_succAbove, Fin.not_lt_zero, not_false_eq_true]
exact hn
· simp only [Fin.getElem_fin, not_and] at hn
by_cases h0 : ¬ GradingCompliant φs c
· rw [staticContract_of_not_gradingCompliant]
simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero, instCommGroup.eq_1, mul_zero]
exact h0
· simp_all only [Finset.mem_univ, not_not, instCommGroup.eq_1, forall_const]
have h1 : contractStateAtIndex φ [c]ᵘᶜ
((uncontractedStatesEquiv φs c) (some n)) = 0 := by
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin, smul_eq_zero]
right
simp only [uncontractedListGet, List.getElem_map,
uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem]
rw [superCommute_anPart_ofState_diff_grade_zero]
exact hn
rw [h1]
simp
end FieldOpAlgebra
end FieldSpecification