PhysLean/HepLean/PerturbationTheory/Algebras/FieldOpAlgebra/TimeContraction.lean
2025-02-03 11:05:43 +00:00

178 lines
6.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.NormalOrder
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.TimeOrder
/-!
# Time contractions
We define the state algebra of a field structure to be the free algebra
generated by the states.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
open FieldOpFreeAlgebra
noncomputable section
namespace FieldOpAlgebra
open FieldStatistic
/-- The time contraction of two States as an element of `𝓞.A` defined
as their time ordering in the state algebra minus their normal ordering in the
creation and annihlation algebra, both mapped to `𝓞.A`.. -/
def timeContract (φ ψ : 𝓕.States) : 𝓕.FieldOpAlgebra :=
𝓣(ofFieldOp φ * ofFieldOp ψ) - 𝓝(ofFieldOp φ * ofFieldOp ψ)
lemma timeContract_eq_smul (φ ψ : 𝓕.States) : timeContract φ ψ =
𝓣(ofFieldOp φ * ofFieldOp ψ) + (-1 : ) • 𝓝(ofFieldOp φ * ofFieldOp ψ) := by rfl
lemma timeContract_of_timeOrderRel (φ ψ : 𝓕.States) (h : timeOrderRel φ ψ) :
timeContract φ ψ = [anPart φ, ofFieldOp ψ]ₛ := by
conv_rhs =>
rw [ofFieldOp_eq_crPart_add_anPart]
rw [map_add, superCommute_anPart_anPart, superCommute_anPart_crPart]
simp only [timeContract, instCommGroup.eq_1, Algebra.smul_mul_assoc, add_zero]
rw [timeOrder_ofFieldOp_ofFieldOp_ordered h]
rw [normalOrder_ofFieldOp_mul_ofFieldOp]
simp only [instCommGroup.eq_1]
rw [ofFieldOp_eq_crPart_add_anPart, ofFieldOp_eq_crPart_add_anPart]
simp only [mul_add, add_mul]
abel_nf
lemma timeContract_of_not_timeOrderRel (φ ψ : 𝓕.States) (h : ¬ timeOrderRel φ ψ) :
timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • timeContract ψ φ := by
rw [timeContract_eq_smul]
simp only [Int.reduceNeg, one_smul, map_add]
rw [normalOrder_ofFieldOp_ofFieldOp_swap]
rw [timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder h]
rw [timeContract_eq_smul]
simp only [instCommGroup.eq_1, map_smul, map_add, smul_add]
rw [smul_smul, smul_smul, mul_comm]
lemma timeContract_of_not_timeOrderRel_expand (φ ψ : 𝓕.States) (h : ¬ timeOrderRel φ ψ) :
timeContract φ ψ = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • [anPart ψ, ofFieldOp φ]ₛ := by
rw [timeContract_of_not_timeOrderRel _ _ h]
rw [timeContract_of_timeOrderRel _ _ _]
have h1 := IsTotal.total (r := 𝓕.timeOrderRel) φ ψ
simp_all
lemma timeContract_mem_center (φ ψ : 𝓕.States) :
timeContract φ ψ ∈ Subalgebra.center 𝓕.FieldOpAlgebra := by
by_cases h : timeOrderRel φ ψ
· rw [timeContract_of_timeOrderRel _ _ h]
exact superCommute_anPart_ofFieldOp_mem_center φ ψ
· rw [timeContract_of_not_timeOrderRel _ _ h]
refine Subalgebra.smul_mem (Subalgebra.center _) ?_ 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ)
rw [timeContract_of_timeOrderRel]
exact superCommute_anPart_ofFieldOp_mem_center _ _
have h1 := IsTotal.total (r := 𝓕.timeOrderRel) φ ψ
simp_all
lemma timeContract_zero_of_diff_grade (φ ψ : 𝓕.States) (h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) :
timeContract φ ψ = 0 := by
by_cases h1 : timeOrderRel φ ψ
· rw [timeContract_of_timeOrderRel _ _ h1]
rw [superCommute_anPart_ofState_diff_grade_zero]
exact h
· rw [timeContract_of_not_timeOrderRel _ _ h1]
rw [timeContract_of_timeOrderRel _ _ _]
rw [superCommute_anPart_ofState_diff_grade_zero]
simp only [instCommGroup.eq_1, smul_zero]
exact h.symm
have ht := IsTotal.total (r := 𝓕.timeOrderRel) φ ψ
simp_all
lemma normalOrder_timeContract (φ ψ : 𝓕.States) :
𝓝(timeContract φ ψ) = 0 := by
by_cases h : timeOrderRel φ ψ
· rw [timeContract_of_timeOrderRel _ _ h]
simp
· rw [timeContract_of_not_timeOrderRel _ _ h]
simp only [instCommGroup.eq_1, map_smul, smul_eq_zero]
have h1 : timeOrderRel ψ φ := by
have ht : timeOrderRel φ ψ timeOrderRel ψ φ := IsTotal.total (r := 𝓕.timeOrderRel) φ ψ
simp_all
rw [timeContract_of_timeOrderRel _ _ h1]
simp
lemma timeOrder_timeContract_eq_time_mid {φ ψ : 𝓕.States}
(h1 : timeOrderRel φ ψ) (h2 : timeOrderRel ψ φ) (a b : 𝓕.FieldOpAlgebra) :
𝓣(a * timeContract φ ψ * b) = timeContract φ ψ * 𝓣(a * b) := by
rw [timeContract_of_timeOrderRel _ _ h1]
rw [ofFieldOp_eq_sum]
simp only [map_sum, Finset.mul_sum, Finset.sum_mul]
congr
funext x
match φ with
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
apply timeOrder_superCommute_eq_time_mid _ _
simp only [crAnTimeOrderRel, h1]
simp [crAnTimeOrderRel, h2]
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
apply timeOrder_superCommute_eq_time_mid _ _
simp only [crAnTimeOrderRel, h1]
simp [crAnTimeOrderRel, h2]
lemma timeOrder_timeContract_eq_time_left {φ ψ : 𝓕.States}
(h1 : timeOrderRel φ ψ) (h2 : timeOrderRel ψ φ) (b : 𝓕.FieldOpAlgebra) :
𝓣(timeContract φ ψ * b) = timeContract φ ψ * 𝓣(b) := by
trans 𝓣(1 * timeContract φ ψ * b)
simp only [one_mul]
rw [timeOrder_timeContract_eq_time_mid h1 h2]
simp
lemma timeOrder_timeContract_neq_time {φ ψ : 𝓕.States}
(h1 : ¬ (timeOrderRel φ ψ ∧ timeOrderRel ψ φ)) :
𝓣(timeContract φ ψ) = 0 := by
by_cases h2 : timeOrderRel φ ψ
· simp_all only [true_and]
rw [timeContract_of_timeOrderRel _ _ h2]
simp only
rw [ofFieldOp_eq_sum]
simp only [map_sum]
apply Finset.sum_eq_zero
intro x hx
match φ with
| .inAsymp φ =>
simp
| .position φ =>
simp only [anPart_position, instCommGroup.eq_1]
apply timeOrder_superCommute_neq_time
simp_all [crAnTimeOrderRel]
| .outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
apply timeOrder_superCommute_neq_time
simp_all [crAnTimeOrderRel]
· rw [timeContract_of_not_timeOrderRel_expand _ _ h2]
simp only [instCommGroup.eq_1, map_smul, smul_eq_zero]
right
rw [ofFieldOp_eq_sum]
simp only [map_sum]
apply Finset.sum_eq_zero
intro x hx
match ψ with
| .inAsymp ψ =>
simp
| .position ψ =>
simp only [anPart_position, instCommGroup.eq_1]
apply timeOrder_superCommute_neq_time
simp_all [crAnTimeOrderRel]
| .outAsymp ψ =>
simp only [anPart_posAsymp, instCommGroup.eq_1]
apply timeOrder_superCommute_neq_time
simp_all [crAnTimeOrderRel]
end FieldOpAlgebra
end
end FieldSpecification