428 lines
17 KiB
Text
428 lines
17 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.FieldSpecification.CrAnStates
|
||
/-!
|
||
|
||
# Creation and annihlation sections
|
||
|
||
In the module
|
||
`HepLean.PerturbationTheory.FieldSpecification.Basic`
|
||
we defined states for a field specification, and in the module
|
||
`HepLean.PerturbationTheory.FieldStatistics.CrAnStates`
|
||
we defined a refinement of states called `CrAnStates` which distinquishes between the
|
||
creation and annihilation components of states.
|
||
There exists, in particular, a map from `CrAnStates` to `States` called `crAnStatesToStates`.
|
||
|
||
Given a list of `States`, `φs`, in this module we define a section of `φs` to be a list of
|
||
`CrAnStates`, `ψs`, such that under the map `crAnStatesToStates`, `ψs` is mapped to `φs`.
|
||
That is to say, the states underlying `ψs` are the states in `φs`.
|
||
We denote these sections as `CrAnSection φs`.
|
||
|
||
Looking forward the main consequence of this definition is the lemma
|
||
`FieldSpecification.FieldOpFreeAlgebra.ofStateList_sum`.
|
||
|
||
In this module we define various properties of `CrAnSection`.
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
/-- The sections in `𝓕.CrAnStates` over a list `φs : List 𝓕.States`.
|
||
In terms of physics, given some fields `φ₁...φₙ`, the different ways one can associate
|
||
each field as a `creation` or an `annilation` operator. E.g. the number of terms
|
||
`φ₁⁰φ₂¹...φₙ⁰` `φ₁¹φ₂¹...φₙ⁰` etc. If some fields are exclusively creation or annhilation
|
||
operators at this point (e.g. ansymptotic states) this is accounted for. -/
|
||
def CrAnSection (φs : List 𝓕.States) : Type :=
|
||
{ψs : List 𝓕.CrAnStates // ψs.map 𝓕.crAnStatesToStates = φs}
|
||
-- Π i, 𝓕.statesToCreateAnnihilateType (φs.get i)
|
||
|
||
namespace CrAnSection
|
||
open FieldStatistic
|
||
variable {𝓕 : FieldSpecification} {φs : List 𝓕.States}
|
||
|
||
@[simp]
|
||
lemma length_eq (ψs : CrAnSection φs) : ψs.1.length = φs.length := by
|
||
simpa using congrArg List.length ψs.2
|
||
|
||
/-- The tail of a section for `φs`. -/
|
||
def tail : {φs : List 𝓕.States} → (ψs : CrAnSection φs) → CrAnSection φs.tail
|
||
| [], ⟨[], h⟩ => ⟨[], h⟩
|
||
| φ :: φs, ⟨[], h⟩ => False.elim (by simp at h)
|
||
| φ :: φs, ⟨ψ :: ψs, h⟩ => ⟨ψs, by rw [List.map_cons, List.cons.injEq] at h; exact h.2⟩
|
||
|
||
lemma head_state_eq {φ : 𝓕.States} : (ψs : CrAnSection (φ :: φs)) →
|
||
(ψs.1.head (by simp [← List.length_pos_iff_ne_nil])).1 = φ
|
||
| ⟨[], h⟩ => False.elim (by simp at h)
|
||
| ⟨ψ :: ψs, h⟩ => by
|
||
simp only [List.map_cons, List.cons.injEq] at h
|
||
exact h.1
|
||
|
||
lemma statistics_eq_state_statistics (ψs : CrAnSection φs) :
|
||
(𝓕 |>ₛ ψs.1) = 𝓕 |>ₛ φs := by
|
||
erw [FieldStatistic.ofList_eq_prod, FieldStatistic.ofList_eq_prod, crAnStatistics]
|
||
rw [← List.map_comp_map, Function.comp_apply, ψs.2]
|
||
|
||
lemma take_statistics_eq_take_state_statistics (ψs : CrAnSection φs) n :
|
||
(𝓕 |>ₛ (ψs.1.take n)) = 𝓕 |>ₛ (φs.take n) := by
|
||
erw [FieldStatistic.ofList_eq_prod, FieldStatistic.ofList_eq_prod, crAnStatistics]
|
||
simp only [instCommGroup, List.map_take]
|
||
rw [← List.map_comp_map, Function.comp_apply, ψs.2]
|
||
|
||
/-- The head of a section for `φ :: φs` as an element in `𝓕.statesToCreateAnnihilateType φ`. -/
|
||
def head : {φ : 𝓕.States} → (ψs : CrAnSection (φ :: φs)) →
|
||
𝓕.statesToCrAnType φ
|
||
| φ, ⟨[], h⟩ => False.elim (by simp at h)
|
||
| φ, ⟨ψ :: ψs, h⟩ => 𝓕.statesToCreateAnnihilateTypeCongr (by
|
||
simpa using head_state_eq ⟨ψ :: ψs, h⟩) ψ.2
|
||
|
||
lemma eq_head_cons_tail {φ : 𝓕.States} {ψs : CrAnSection (φ :: φs)} :
|
||
ψs.1 = ⟨φ, head ψs⟩ :: ψs.tail.1 := by
|
||
match ψs with
|
||
| ⟨[], h⟩ => exact False.elim (by simp at h)
|
||
| ⟨ψ :: ψs, h⟩ =>
|
||
have h2 := head_state_eq ⟨ψ :: ψs, h⟩
|
||
simp only [List.head_cons] at h2
|
||
subst h2
|
||
rfl
|
||
|
||
/-- The creation of a section from for `φ : φs` from a section for `φs` and a
|
||
element of `𝓕.statesToCreateAnnihilateType φ`. -/
|
||
def cons {φ : 𝓕.States} (ψ : 𝓕.statesToCrAnType φ) (ψs : CrAnSection φs) :
|
||
CrAnSection (φ :: φs) := ⟨⟨φ, ψ⟩ :: ψs.1, by
|
||
simp [List.map_cons, ψs.2]⟩
|
||
|
||
/-- For the empty list of states there is only one `CrAnSection`. Corresponding to the
|
||
empty list of `CrAnStates`. -/
|
||
def nilEquiv : CrAnSection (𝓕 := 𝓕) [] ≃ Unit where
|
||
toFun _ := ()
|
||
invFun _ := ⟨[], rfl⟩
|
||
left_inv ψs := Subtype.ext <| by
|
||
have h2 := ψs.2
|
||
simp only [List.map_eq_nil_iff] at h2
|
||
simp [h2]
|
||
right_inv _ := by
|
||
simp
|
||
|
||
/-- The creation and annihlation sections for a singleton list is given by
|
||
a choice of `𝓕.statesToCreateAnnihilateType φ`. If `φ` is a asymptotic state
|
||
there is no choice here, else there are two choices. -/
|
||
def singletonEquiv {φ : 𝓕.States} : CrAnSection [φ] ≃
|
||
𝓕.statesToCrAnType φ where
|
||
toFun ψs := ψs.head
|
||
invFun ψ := ⟨[⟨φ, ψ⟩], by simp⟩
|
||
left_inv ψs := by
|
||
apply Subtype.ext
|
||
simp only
|
||
have h1 := eq_head_cons_tail (ψs := ψs)
|
||
rw [h1]
|
||
have h2 := ψs.tail.2
|
||
simp only [List.tail_cons, List.map_eq_nil_iff] at h2
|
||
simp [h2]
|
||
right_inv ψ := by
|
||
simp only [head]
|
||
rfl
|
||
|
||
/-- An equivalence seperating the head of a creation and annhilation section
|
||
from the tail. -/
|
||
def consEquiv {φ : 𝓕.States} {φs : List 𝓕.States} : CrAnSection (φ :: φs) ≃
|
||
𝓕.statesToCrAnType φ × CrAnSection φs where
|
||
toFun ψs := ⟨ψs.head, ψs.tail⟩
|
||
invFun ψψs :=
|
||
match ψψs with
|
||
| (ψ, ψs) => cons ψ ψs
|
||
left_inv ψs := by
|
||
apply Subtype.ext
|
||
exact Eq.symm eq_head_cons_tail
|
||
right_inv ψψs := by
|
||
match ψψs with
|
||
| (ψ, ψs) => rfl
|
||
|
||
/-- The instance of a finite type on `CrAnSection`s defined recursively through
|
||
`consEquiv`. -/
|
||
instance fintype : (φs : List 𝓕.States) → Fintype (CrAnSection φs)
|
||
| [] => Fintype.ofEquiv _ nilEquiv.symm
|
||
| _ :: φs =>
|
||
haveI : Fintype (CrAnSection φs) := fintype φs
|
||
Fintype.ofEquiv _ consEquiv.symm
|
||
|
||
@[simp]
|
||
lemma card_nil_eq : Fintype.card (CrAnSection (𝓕 := 𝓕) []) = 1 := by
|
||
rw [Fintype.ofEquiv_card nilEquiv.symm]
|
||
simp
|
||
|
||
lemma card_cons_eq {φ : 𝓕.States} {φs : List 𝓕.States} :
|
||
Fintype.card (CrAnSection (φ :: φs)) = Fintype.card (𝓕.statesToCrAnType φ) *
|
||
Fintype.card (CrAnSection φs) := by
|
||
rw [Fintype.ofEquiv_card consEquiv.symm]
|
||
simp
|
||
|
||
lemma card_eq_mul : {φs : List 𝓕.States} → Fintype.card (CrAnSection φs) =
|
||
2 ^ (List.countP 𝓕.statesIsPosition φs)
|
||
| [] => by
|
||
simp
|
||
| States.position _ :: φs => by
|
||
simp only [statesIsPosition, List.countP_cons_of_pos]
|
||
rw [card_cons_eq]
|
||
rw [card_eq_mul]
|
||
simp only [statesToCrAnType, CreateAnnihilate.CreateAnnihilate_card_eq_two]
|
||
ring
|
||
| States.inAsymp x_ :: φs => by
|
||
simp only [statesIsPosition, Bool.false_eq_true, not_false_eq_true, List.countP_cons_of_neg]
|
||
rw [card_cons_eq]
|
||
rw [card_eq_mul]
|
||
simp [statesToCrAnType]
|
||
| States.outAsymp _ :: φs => by
|
||
simp only [statesIsPosition, Bool.false_eq_true, not_false_eq_true, List.countP_cons_of_neg]
|
||
rw [card_cons_eq]
|
||
rw [card_eq_mul]
|
||
simp [statesToCrAnType]
|
||
|
||
lemma card_perm_eq {φs φs' : List 𝓕.States} (h : φs.Perm φs') :
|
||
Fintype.card (CrAnSection φs) = Fintype.card (CrAnSection φs') := by
|
||
rw [card_eq_mul, card_eq_mul]
|
||
congr 1
|
||
exact List.Perm.countP_congr h fun x => congrFun rfl
|
||
|
||
@[simp]
|
||
lemma sum_nil (f : CrAnSection (𝓕 := 𝓕) [] → M) [AddCommMonoid M] :
|
||
∑ (s : CrAnSection []), f s = f ⟨[], rfl⟩ := by
|
||
rw [← nilEquiv.symm.sum_comp]
|
||
simp only [Finset.univ_unique, PUnit.default_eq_unit, Finset.sum_singleton]
|
||
rfl
|
||
|
||
lemma sum_cons (f : CrAnSection (φ :: φs) → M) [AddCommMonoid M] :
|
||
∑ (s : CrAnSection (φ :: φs)), f s = ∑ (a : 𝓕.statesToCrAnType φ),
|
||
∑ (s : CrAnSection φs), f (cons a s) := by
|
||
rw [← consEquiv.symm.sum_comp, Fintype.sum_prod_type]
|
||
rfl
|
||
|
||
lemma sum_over_length {s : CrAnSection φs} (f : Fin s.1.length → M)
|
||
[AddCommMonoid M] : ∑ (n : Fin s.1.length), f n =
|
||
∑ (n : Fin φs.length), f (Fin.cast (length_eq s).symm n) := by
|
||
rw [← (finCongr (length_eq s)).sum_comp]
|
||
rfl
|
||
|
||
/-- The equivalence between `CrAnSection φs` and
|
||
`CrAnSection φs'` induced by an equality `φs = φs'`. -/
|
||
def congr : {φs φs' : List 𝓕.States} → (h : φs = φs') →
|
||
CrAnSection φs ≃ CrAnSection φs'
|
||
| _, _, rfl => Equiv.refl _
|
||
|
||
@[simp]
|
||
lemma congr_fst {φs φs' : List 𝓕.States} (h : φs = φs') (ψs : CrAnSection φs) :
|
||
(congr h ψs).1 = ψs.1 := by
|
||
cases h
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma congr_symm {φs φs' : List 𝓕.States} (h : φs = φs') :
|
||
(congr h).symm = congr h.symm := by
|
||
cases h
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma congr_trans_apply {φs φs' φs'' : List 𝓕.States} (h1 : φs = φs') (h2 : φs' = φs'')
|
||
(ψs : CrAnSection φs) :
|
||
(congr h2 (congr h1 ψs)) = congr (by rw [h1, h2]) ψs := by
|
||
subst h1 h2
|
||
rfl
|
||
|
||
/-- Returns the first `n` elements of a section and its underlying list. -/
|
||
def take (n : ℕ) (ψs : CrAnSection φs) : CrAnSection (φs.take n) :=
|
||
⟨ψs.1.take n, by simp [ψs.2]⟩
|
||
|
||
@[simp]
|
||
lemma take_congr {φs φs' : List 𝓕.States} (h : φs = φs') (n : ℕ)
|
||
(ψs : CrAnSection φs) :
|
||
(take n (congr h ψs)) = congr (by rw [h]) (take n ψs) := by
|
||
subst h
|
||
rfl
|
||
|
||
/-- Removes the first `n` elements of a section and its underlying list. -/
|
||
def drop (n : ℕ) (ψs : CrAnSection φs) : CrAnSection (φs.drop n) :=
|
||
⟨ψs.1.drop n, by simp [ψs.2]⟩
|
||
|
||
@[simp]
|
||
lemma drop_congr {φs φs' : List 𝓕.States} (h : φs = φs') (n : ℕ)
|
||
(ψs : CrAnSection φs) :
|
||
(drop n (congr h ψs)) = congr (by rw [h]) (drop n ψs) := by
|
||
subst h
|
||
rfl
|
||
|
||
/-- Appends two sections and their underlying lists. -/
|
||
def append {φs φs' : List 𝓕.States} (ψs : CrAnSection φs)
|
||
(ψs' : CrAnSection φs') : CrAnSection (φs ++ φs') :=
|
||
⟨ψs.1 ++ ψs'.1, by simp [ψs.2, ψs'.2]⟩
|
||
|
||
lemma append_assoc {φs φs' φs'' : List 𝓕.States} (ψs : CrAnSection φs)
|
||
(ψs' : CrAnSection φs') (ψs'' : CrAnSection φs'') :
|
||
append ψs (append ψs' ψs'') = congr (by simp) (append (append ψs ψs') ψs'') := by
|
||
apply Subtype.ext
|
||
simp [append]
|
||
|
||
lemma append_assoc' {φs φs' φs'' : List 𝓕.States} (ψs : CrAnSection φs)
|
||
(ψs' : CrAnSection φs') (ψs'' : CrAnSection φs'') :
|
||
(append (append ψs ψs') ψs'') = congr (by simp) (append ψs (append ψs' ψs'')) := by
|
||
apply Subtype.ext
|
||
simp [append]
|
||
|
||
lemma singletonEquiv_append_eq_cons {φs : List 𝓕.States} {φ : 𝓕.States}
|
||
(ψs : CrAnSection φs) (ψ : 𝓕.statesToCrAnType φ) :
|
||
append (singletonEquiv.symm ψ) ψs = cons ψ ψs := by
|
||
apply Subtype.ext
|
||
simp [append, cons, singletonEquiv]
|
||
|
||
@[simp]
|
||
lemma take_append_drop {n : ℕ} (ψs : CrAnSection φs) :
|
||
append (take n ψs) (drop n ψs) = congr (List.take_append_drop n φs).symm ψs := by
|
||
apply Subtype.ext
|
||
simp [take, drop, append]
|
||
|
||
lemma congr_append {φs1 φs1' φs2 φs2' : List 𝓕.States} (h1 : φs1 = φs1') (h2 : φs2 = φs2')
|
||
(ψs1 : CrAnSection φs1) (ψs2 : CrAnSection φs2) :
|
||
(append (congr h1 ψs1) (congr h2 ψs2)) = congr (by rw [h1, h2]) (append ψs1 ψs2) := by
|
||
subst h1 h2
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma congr_fst_append {φs1 φs1' φs2 : List 𝓕.States} (h1 : φs1 = φs1')
|
||
(ψs1 : CrAnSection φs1) (ψs2 : CrAnSection φs2) :
|
||
(append (congr h1 ψs1) (ψs2)) = congr (by rw [h1]) (append ψs1 ψs2) := by
|
||
subst h1
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma congr_snd_append {φs1 φs2 φs2' : List 𝓕.States} (h2 : φs2 = φs2')
|
||
(ψs1 : CrAnSection φs1) (ψs2 : CrAnSection φs2) :
|
||
(append ψs1 (congr h2 ψs2)) = congr (by rw [h2]) (append ψs1 ψs2) := by
|
||
subst h2
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma take_left {φs φs' : List 𝓕.States} (ψs : CrAnSection φs)
|
||
(ψs' : CrAnSection φs') :
|
||
take φs.length (ψs.append ψs') = congr (by simp) ψs := by
|
||
apply Subtype.ext
|
||
simp [take, append]
|
||
|
||
@[simp]
|
||
lemma drop_left {φs φs' : List 𝓕.States} (ψs : CrAnSection φs)
|
||
(ψs' : CrAnSection φs') :
|
||
drop φs.length (ψs.append ψs') = congr (by simp) ψs' := by
|
||
apply Subtype.ext
|
||
simp [drop, append]
|
||
|
||
/-- The equivalence between `CrAnSection (φs ++ φs')` and
|
||
`CrAnSection φs × CrAnSection φs` formed by `append`, `take`
|
||
and `drop` and their interrelationship. -/
|
||
def appendEquiv {φs φs' : List 𝓕.States} : CrAnSection (φs ++ φs') ≃
|
||
CrAnSection φs × CrAnSection φs' where
|
||
toFun ψs := (congr (List.take_left φs φs') (take φs.length ψs),
|
||
congr (List.drop_left φs φs') (drop φs.length ψs))
|
||
invFun ψsψs' := append ψsψs'.1 ψsψs'.2
|
||
left_inv ψs := by
|
||
apply Subtype.ext
|
||
simp
|
||
right_inv ψsψs' := by
|
||
match ψsψs' with
|
||
| (ψs, ψs') =>
|
||
simp only [take_left, drop_left, Prod.mk.injEq]
|
||
refine And.intro (Subtype.ext ?_) (Subtype.ext ?_)
|
||
· simp
|
||
· simp
|
||
|
||
@[simp]
|
||
lemma _root_.List.map_eraseIdx {α β : Type} (f : α → β) : (l : List α) → (n : ℕ) →
|
||
List.map f (l.eraseIdx n) = (List.map f l).eraseIdx n
|
||
| [], _ => rfl
|
||
| a :: l, 0 => rfl
|
||
| a :: l, n+1 => by
|
||
simp only [List.eraseIdx, List.map_cons, List.cons.injEq, true_and]
|
||
exact List.map_eraseIdx f l n
|
||
|
||
/-- Erasing an element from a section and it's underlying list. -/
|
||
def eraseIdx (n : ℕ) (ψs : CrAnSection φs) : CrAnSection (φs.eraseIdx n) :=
|
||
⟨ψs.1.eraseIdx n, by simp [ψs.2]⟩
|
||
|
||
/-- The equivalence formed by extracting an element from a section. -/
|
||
def eraseIdxEquiv (n : ℕ) (φs : List 𝓕.States) (hn : n < φs.length) :
|
||
CrAnSection φs ≃ 𝓕.statesToCrAnType φs[n] ×
|
||
CrAnSection (φs.eraseIdx n) :=
|
||
(congr (by simp only [List.take_concat_get', List.take_append_drop])).trans <|
|
||
appendEquiv.trans <|
|
||
(Equiv.prodCongr (appendEquiv.trans (Equiv.prodComm _ _)) (Equiv.refl _)).trans <|
|
||
(Equiv.prodAssoc _ _ _).trans <|
|
||
Equiv.prodCongr singletonEquiv <|
|
||
appendEquiv.symm.trans <|
|
||
congr (List.eraseIdx_eq_take_drop_succ φs n).symm
|
||
|
||
@[simp]
|
||
lemma eraseIdxEquiv_apply_snd {n : ℕ} (ψs : CrAnSection φs) (hn : n < φs.length) :
|
||
(eraseIdxEquiv n φs hn ψs).snd = eraseIdx n ψs := by
|
||
apply Subtype.ext
|
||
simp only [eraseIdxEquiv, appendEquiv, take, List.take_concat_get', List.length_take, drop,
|
||
append, Equiv.trans_apply, Equiv.coe_fn_mk, congr_fst, Equiv.prodCongr_apply, Equiv.coe_trans,
|
||
Equiv.coe_prodComm, Equiv.coe_refl, Prod.map_apply, Function.comp_apply, Prod.swap_prod_mk,
|
||
id_eq, Equiv.prodAssoc_apply, Equiv.coe_fn_symm_mk, eraseIdx]
|
||
rw [Nat.min_eq_left (Nat.le_of_succ_le hn), Nat.min_eq_left hn, List.take_take]
|
||
simp only [Nat.succ_eq_add_one, le_add_iff_nonneg_right, zero_le, inf_of_le_left]
|
||
exact Eq.symm (List.eraseIdx_eq_take_drop_succ ψs.1 n)
|
||
|
||
lemma eraseIdxEquiv_symm_eq_take_cons_drop {n : ℕ} (φs : List 𝓕.States) (hn : n < φs.length)
|
||
(a : 𝓕.statesToCrAnType φs[n]) (s : CrAnSection (φs.eraseIdx n)) :
|
||
(eraseIdxEquiv n φs hn).symm ⟨a, s⟩ =
|
||
congr (by
|
||
rw [HepLean.List.take_eraseIdx_same, HepLean.List.drop_eraseIdx_succ]
|
||
conv_rhs => rw [← List.take_append_drop n φs]) (append (take n s) (cons a (drop n s))) := by
|
||
simp only [eraseIdxEquiv, appendEquiv, Equiv.symm_trans_apply, congr_symm, Equiv.prodCongr_symm,
|
||
Equiv.refl_symm, Equiv.prodCongr_apply, Prod.map_apply, Equiv.symm_symm, Equiv.coe_fn_mk,
|
||
take_congr, congr_trans_apply, drop_congr, Equiv.prodAssoc_symm_apply, Equiv.coe_refl,
|
||
Equiv.prodComm_symm, Equiv.prodComm_apply, Prod.swap_prod_mk, Equiv.coe_fn_symm_mk,
|
||
congr_fst_append, id_eq, congr_snd_append]
|
||
rw [append_assoc', singletonEquiv_append_eq_cons]
|
||
simp only [List.singleton_append, congr_trans_apply]
|
||
apply Subtype.ext
|
||
simp only [congr_fst]
|
||
have hn : (List.take n φs).length = n := by
|
||
rw [@List.length_take]
|
||
simp only [inf_eq_left]
|
||
exact Nat.le_of_succ_le hn
|
||
rw [hn]
|
||
|
||
@[simp]
|
||
lemma eraseIdxEquiv_symm_getElem {n : ℕ} (φs : List 𝓕.States) (hn : n < φs.length)
|
||
(a : 𝓕.statesToCrAnType φs[n]) (s : CrAnSection (φs.eraseIdx n)) :
|
||
getElem ((eraseIdxEquiv n φs hn).symm ⟨a,s⟩).1 n
|
||
(by rw [length_eq]; exact hn) = ⟨φs[n], a⟩ := by
|
||
rw [eraseIdxEquiv_symm_eq_take_cons_drop]
|
||
simp only [append, take, cons, drop, congr_fst]
|
||
rw [List.getElem_append]
|
||
simp only [List.length_take, length_eq, lt_inf_iff, lt_self_iff_false, false_and, ↓reduceDIte]
|
||
have h0 : n ⊓ (φs.eraseIdx n).length = n := by
|
||
simp only [inf_eq_left]
|
||
rw [← HepLean.List.eraseIdx_length _ ⟨n, hn⟩] at hn
|
||
exact Nat.le_of_lt_succ hn
|
||
simp [h0]
|
||
|
||
@[simp]
|
||
lemma eraseIdxEquiv_symm_eraseIdx {n : ℕ} (φs : List 𝓕.States) (hn : n < φs.length)
|
||
(a : 𝓕.statesToCrAnType φs[n]) (s : CrAnSection (φs.eraseIdx n)) :
|
||
((eraseIdxEquiv n φs hn).symm ⟨a, s⟩).1.eraseIdx n = s.1 := by
|
||
change (((eraseIdxEquiv n φs hn).symm ⟨a, s⟩).eraseIdx n).1 = _
|
||
rw [← eraseIdxEquiv_apply_snd _ hn]
|
||
simp
|
||
|
||
lemma sum_eraseIdxEquiv (n : ℕ) (φs : List 𝓕.States) (hn : n < φs.length)
|
||
(f : CrAnSection φs → M) [AddCommMonoid M] : ∑ (s : CrAnSection φs), f s =
|
||
∑ (a : 𝓕.statesToCrAnType φs[n]), ∑ (s : CrAnSection (φs.eraseIdx n)),
|
||
f ((eraseIdxEquiv n φs hn).symm ⟨a, s⟩) := by
|
||
rw [← (eraseIdxEquiv n φs hn).symm.sum_comp]
|
||
rw [Fintype.sum_prod_type]
|
||
|
||
end CrAnSection
|
||
|
||
end FieldSpecification
|