397 lines
18 KiB
Text
397 lines
18 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.WickContraction.TimeContract
|
||
import HepLean.PerturbationTheory.WickContraction.Sign.InsertNone
|
||
import HepLean.PerturbationTheory.WickContraction.Sign.InsertSome
|
||
import HepLean.Meta.Remark.Basic
|
||
/-!
|
||
|
||
# Wick's theorem
|
||
|
||
This file contrains the time-dependent version of Wick's theorem
|
||
for lists of fields containing both fermions and bosons.
|
||
|
||
Wick's theorem is related to Isserlis' theorem in mathematics.
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
open FieldOpFreeAlgebra
|
||
open FieldOpAlgebra
|
||
open HepLean.List
|
||
open WickContraction
|
||
open FieldStatistic
|
||
|
||
/-!
|
||
|
||
## Normal order of uncontracted terms within proto-algebra.
|
||
|
||
-/
|
||
|
||
/--
|
||
Let `c` be a Wick Contraction for `φs := φ₀φ₁…φₙ`.
|
||
We have (roughly) `𝓝ᶠ([φsΛ ↩Λ φ i none]ᵘᶜ) = s • 𝓝ᶠ(φ :: [φsΛ]ᵘᶜ)`
|
||
Where `s` is the exchange sign for `φ` and the uncontracted fields in `φ₀φ₁…φᵢ₋₁`.
|
||
-/
|
||
lemma normalOrder_uncontracted_none (φ : 𝓕.States) (φs : List 𝓕.States)
|
||
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) :
|
||
𝓝(ofFieldOpList [φsΛ ↩Λ φ i none]ᵘᶜ)
|
||
= 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, φsΛ.uncontracted.filter (fun x => i.succAbove x < i)⟩) •
|
||
𝓝(ofFieldOpList (φ :: [φsΛ]ᵘᶜ)) := by
|
||
simp only [Nat.succ_eq_add_one, instCommGroup.eq_1]
|
||
rw [ofFieldOpList_normalOrder_insert φ [φsΛ]ᵘᶜ
|
||
⟨(φsΛ.uncontractedListOrderPos i), by simp [uncontractedListGet]⟩, smul_smul]
|
||
trans (1 : ℂ) • (𝓝(ofFieldOpList [φsΛ ↩Λ φ i none]ᵘᶜ))
|
||
· simp
|
||
congr 1
|
||
simp only [instCommGroup.eq_1, uncontractedListGet]
|
||
rw [← List.map_take, take_uncontractedListOrderPos_eq_filter]
|
||
have h1 : (𝓕 |>ₛ List.map φs.get (List.filter (fun x => decide (↑x < i.1)) φsΛ.uncontractedList))
|
||
= 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x.val < i.1))⟩ := by
|
||
simp only [Nat.succ_eq_add_one, ofFinset]
|
||
congr
|
||
rw [uncontractedList_eq_sort]
|
||
have hdup : (List.filter (fun x => decide (x.1 < i.1))
|
||
(Finset.sort (fun x1 x2 => x1 ≤ x2) φsΛ.uncontracted)).Nodup := by
|
||
exact List.Nodup.filter _ (Finset.sort_nodup (fun x1 x2 => x1 ≤ x2) φsΛ.uncontracted)
|
||
have hsort : (List.filter (fun x => decide (x.1 < i.1))
|
||
(Finset.sort (fun x1 x2 => x1 ≤ x2) φsΛ.uncontracted)).Sorted (· ≤ ·) := by
|
||
exact List.Sorted.filter _ (Finset.sort_sorted (fun x1 x2 => x1 ≤ x2) φsΛ.uncontracted)
|
||
rw [← (List.toFinset_sort (· ≤ ·) hdup).mpr hsort]
|
||
congr
|
||
ext a
|
||
simp
|
||
rw [h1]
|
||
simp only [Nat.succ_eq_add_one]
|
||
have h2 : (Finset.filter (fun x => x.1 < i.1) φsΛ.uncontracted) =
|
||
(Finset.filter (fun x => i.succAbove x < i) φsΛ.uncontracted) := by
|
||
ext a
|
||
simp only [Nat.succ_eq_add_one, Finset.mem_filter, and_congr_right_iff]
|
||
intro ha
|
||
simp only [Fin.succAbove]
|
||
split
|
||
· apply Iff.intro
|
||
· intro h
|
||
omega
|
||
· intro h
|
||
rename_i h
|
||
rw [Fin.lt_def] at h
|
||
simp only [Fin.coe_castSucc] at h
|
||
omega
|
||
· apply Iff.intro
|
||
· intro h
|
||
rename_i h'
|
||
rw [Fin.lt_def]
|
||
simp only [Fin.val_succ]
|
||
rw [Fin.lt_def] at h'
|
||
simp only [Fin.coe_castSucc, not_lt] at h'
|
||
omega
|
||
· intro h
|
||
rename_i h
|
||
rw [Fin.lt_def] at h
|
||
simp only [Fin.val_succ] at h
|
||
omega
|
||
rw [h2]
|
||
simp only [exchangeSign_mul_self]
|
||
congr
|
||
simp only [Nat.succ_eq_add_one]
|
||
rw [insertAndContract_uncontractedList_none_map]
|
||
|
||
/--
|
||
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
|
||
We have (roughly) `N(c ↩Λ φ i k).uncontractedList`
|
||
is equal to `N((c.uncontractedList).eraseIdx k')`
|
||
where `k'` is the position in `c.uncontractedList` corresponding to `k`.
|
||
-/
|
||
lemma normalOrder_uncontracted_some (φ : 𝓕.States) (φs : List 𝓕.States)
|
||
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : φsΛ.uncontracted) :
|
||
𝓝(ofFieldOpList [φsΛ ↩Λ φ i (some k)]ᵘᶜ)
|
||
= 𝓝(ofFieldOpList (optionEraseZ [φsΛ]ᵘᶜ φ ((uncontractedStatesEquiv φs φsΛ) k))) := by
|
||
simp only [Nat.succ_eq_add_one, insertAndContract, optionEraseZ, uncontractedStatesEquiv,
|
||
Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
|
||
Fin.coe_cast, uncontractedListGet]
|
||
congr
|
||
rw [congr_uncontractedList]
|
||
erw [uncontractedList_extractEquiv_symm_some]
|
||
simp only [Fin.coe_succAboveEmb, List.map_eraseIdx, List.map_map]
|
||
congr
|
||
conv_rhs => rw [get_eq_insertIdx_succAbove φ φs i]
|
||
|
||
/-!
|
||
|
||
## Wick terms
|
||
|
||
-/
|
||
|
||
remark wick_term_terminology := "
|
||
Let `φsΛ` be a Wick contraction. We informally call the term
|
||
`(φsΛ.sign • φsΛ.timeContract 𝓞) * 𝓞.crAnF 𝓝ᶠ([φsΛ]ᵘᶜ)` the Wick term
|
||
associated with `φsΛ`. We do not make this a fully-fledge definition, as
|
||
in most cases we want to consider slight modifications of this term."
|
||
|
||
/--
|
||
Let `φsΛ` be a Wick Contraction for `φs = φ₀φ₁…φₙ`. Then the wick-term of ` (φsΛ ↩Λ φ i none)`
|
||
|
||
```(φsΛ ↩Λ φ i none).sign • (φsΛ ↩Λ φ i none).timeContract 𝓞 * 𝓞.crAnF 𝓝ᶠ([φsΛ ↩Λ φ i none]ᵘᶜ)```
|
||
|
||
is equal to
|
||
|
||
`s • (φsΛ.sign • φsΛ.timeContract 𝓞 * 𝓞.crAnF 𝓝ᶠ(φ :: [φsΛ]ᵘᶜ))`
|
||
|
||
where `s` is the exchange sign of `φ` and the uncontracted fields in `φ₀φ₁…φᵢ₋₁`.
|
||
|
||
The proof of this result relies primarily on:
|
||
- `normalOrderF_uncontracted_none` which replaces `𝓝ᶠ([φsΛ ↩Λ φ i none]ᵘᶜ)` with
|
||
`𝓝ᶠ(φ :: [φsΛ]ᵘᶜ)` up to a sign.
|
||
- `timeContract_insertAndContract_none` which replaces `(φsΛ ↩Λ φ i none).timeContract 𝓞` with
|
||
`φsΛ.timeContract 𝓞`.
|
||
- `sign_insert_none` and `signInsertNone_eq_filterset` which are used to take account of
|
||
signs.
|
||
-/
|
||
lemma wick_term_none_eq_wick_term_cons (φ : 𝓕.States) (φs : List 𝓕.States)
|
||
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) :
|
||
(φsΛ ↩Λ φ i none).sign • (φsΛ ↩Λ φ i none).timeContract
|
||
* 𝓝(ofFieldOpList [φsΛ ↩Λ φ i none]ᵘᶜ) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun k => i.succAbove k < i))⟩)
|
||
• (φsΛ.sign • φsΛ.timeContract * 𝓝(ofFieldOpList (φ :: [φsΛ]ᵘᶜ))) := by
|
||
by_cases hg : GradingCompliant φs φsΛ
|
||
· rw [normalOrder_uncontracted_none, sign_insert_none]
|
||
simp only [Nat.succ_eq_add_one, timeContract_insertAndContract_none, instCommGroup.eq_1,
|
||
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
|
||
congr 1
|
||
rw [← mul_assoc]
|
||
congr 1
|
||
rw [signInsertNone_eq_filterset _ _ _ _ hg, ← map_mul]
|
||
congr
|
||
rw [ofFinset_union]
|
||
congr
|
||
ext a
|
||
simp only [Finset.mem_sdiff, Finset.mem_union, Finset.mem_filter, Finset.mem_univ, true_and,
|
||
Finset.mem_inter, not_and, not_lt, and_imp]
|
||
apply Iff.intro
|
||
· intro ha
|
||
have ha1 := ha.1
|
||
rcases ha1 with ha1 | ha1
|
||
· exact ha1.2
|
||
· exact ha1.2
|
||
· intro ha
|
||
simp only [uncontracted, Finset.mem_filter, Finset.mem_univ, true_and, ha, and_true,
|
||
forall_const]
|
||
have hx : φsΛ.getDual? a = none ↔ ¬ (φsΛ.getDual? a).isSome := by
|
||
simp
|
||
rw [hx]
|
||
simp only [Bool.not_eq_true, Bool.eq_false_or_eq_true_self, true_and]
|
||
intro h1 h2
|
||
simp_all
|
||
· simp only [Nat.succ_eq_add_one, timeContract_insertAndContract_none, Algebra.smul_mul_assoc,
|
||
instCommGroup.eq_1]
|
||
rw [timeContract_of_not_gradingCompliant]
|
||
simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero]
|
||
exact hg
|
||
|
||
/--
|
||
Let `c` be a Wick Contraction for `φ₀φ₁…φₙ`.
|
||
This lemma states that
|
||
`(c.sign • c.timeContract 𝓞) * N(c.uncontracted)`
|
||
for `c` equal to `c ↩Λ φ i (some k)` is equal to that for just `c`
|
||
mulitiplied by the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`.
|
||
-/
|
||
lemma wick_term_some_eq_wick_term_optionEraseZ (φ : 𝓕.States) (φs : List 𝓕.States)
|
||
(i : Fin φs.length.succ) (φsΛ : WickContraction φs.length) (k : φsΛ.uncontracted)
|
||
(hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
|
||
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬ timeOrderRel φs[k] φ) :
|
||
(φsΛ ↩Λ φ i (some k)).sign • (φsΛ ↩Λ φ i (some k)).timeContract
|
||
* 𝓝(ofFieldOpList [φsΛ ↩Λ φ i (some k)]ᵘᶜ) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩)
|
||
• (φsΛ.sign • (contractStateAtIndex φ [φsΛ]ᵘᶜ
|
||
((uncontractedStatesEquiv φs φsΛ) (some k)) * φsΛ.timeContract)
|
||
* 𝓝(ofFieldOpList (optionEraseZ [φsΛ]ᵘᶜ φ (uncontractedStatesEquiv φs φsΛ k)))) := by
|
||
by_cases hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[k.1])
|
||
· by_cases hk : i.succAbove k < i
|
||
· rw [WickContraction.timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_not_lt]
|
||
swap
|
||
· exact hn _ hk
|
||
rw [normalOrder_uncontracted_some, sign_insert_some]
|
||
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
|
||
congr 1
|
||
rw [mul_assoc, mul_comm (sign φs φsΛ), ← mul_assoc]
|
||
congr 1
|
||
exact signInsertSome_mul_filter_contracted_of_lt φ φs φsΛ i k hk hg
|
||
· omega
|
||
· have hik : i.succAbove ↑k ≠ i := Fin.succAbove_ne i ↑k
|
||
rw [WickContraction.timeConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
|
||
swap
|
||
· exact hlt _
|
||
rw [normalOrder_uncontracted_some]
|
||
rw [sign_insert_some]
|
||
simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc]
|
||
congr 1
|
||
rw [mul_assoc, mul_comm (sign φs φsΛ), ← mul_assoc]
|
||
congr 1
|
||
exact signInsertSome_mul_filter_contracted_of_not_lt φ φs φsΛ i k hk hg
|
||
· omega
|
||
· rw [timeConract_insertAndContract_some]
|
||
simp only [Fin.getElem_fin, not_and] at hg
|
||
by_cases hg' : GradingCompliant φs φsΛ
|
||
· have hg := hg hg'
|
||
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, Algebra.smul_mul_assoc,
|
||
instCommGroup.eq_1, contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
|
||
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
|
||
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
|
||
uncontractedListGet]
|
||
by_cases h1 : i < i.succAbove ↑k
|
||
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
|
||
rw [timeContract_zero_of_diff_grade]
|
||
simp only [zero_mul, smul_zero]
|
||
rw [superCommute_anPart_ofState_diff_grade_zero]
|
||
simp only [zero_mul, smul_zero]
|
||
exact hg
|
||
exact hg
|
||
· simp only [h1, ↓reduceIte, MulMemClass.coe_mul]
|
||
rw [timeContract_zero_of_diff_grade]
|
||
simp only [zero_mul, smul_zero]
|
||
rw [superCommute_anPart_ofState_diff_grade_zero]
|
||
simp only [zero_mul, smul_zero]
|
||
exact hg
|
||
exact fun a => hg (id (Eq.symm a))
|
||
· rw [timeContract_of_not_gradingCompliant]
|
||
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, mul_zero, ZeroMemClass.coe_zero, smul_zero,
|
||
zero_mul, instCommGroup.eq_1]
|
||
exact hg'
|
||
|
||
/--
|
||
Given a Wick contraction `φsΛ` of `φs = φ₀φ₁…φₙ` and an `i`, we have that
|
||
`(φsΛ.sign • φsΛ.timeContract 𝓞) * 𝓞.crAnF (φ * 𝓝ᶠ([φsΛ]ᵘᶜ))`
|
||
is equal to the product of
|
||
- the exchange sign of `φ` and `φ₀φ₁…φᵢ₋₁`,
|
||
- the sum of `((φsΛ ↩Λ φ i k).sign • (φsΛ ↩Λ φ i k).timeContract 𝓞) * 𝓞.crAnF 𝓝ᶠ([φsΛ ↩Λ φ i k]ᵘᶜ)`
|
||
over all `k` in `Option φsΛ.uncontracted`.
|
||
|
||
The proof of this result primarily depends on
|
||
- `crAnF_ofState_mul_normalOrderF_ofStatesList_eq_sum` to rewrite `𝓞.crAnF (φ * 𝓝ᶠ([φsΛ]ᵘᶜ))`
|
||
- `wick_term_none_eq_wick_term_cons`
|
||
- `wick_term_some_eq_wick_term_optionEraseZ`
|
||
-/
|
||
lemma wick_term_cons_eq_sum_wick_term (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ)
|
||
(φsΛ : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k])
|
||
(hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬timeOrderRel φs[k] φ) :
|
||
(φsΛ.sign • φsΛ.timeContract) * ((ofFieldOp φ) * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)) =
|
||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) •
|
||
∑ (k : Option φsΛ.uncontracted), ((φsΛ ↩Λ φ i k).sign •
|
||
(φsΛ ↩Λ φ i k).timeContract * (𝓝(ofFieldOpList [φsΛ ↩Λ φ i k]ᵘᶜ))) := by
|
||
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum, Finset.mul_sum,
|
||
uncontractedStatesEquiv_list_sum, Finset.smul_sum]
|
||
simp only [instCommGroup.eq_1, Nat.succ_eq_add_one]
|
||
congr 1
|
||
funext n
|
||
match n with
|
||
| none =>
|
||
rw [wick_term_none_eq_wick_term_cons]
|
||
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
|
||
Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, instCommGroup.eq_1,
|
||
smul_smul]
|
||
congr 1
|
||
rw [← mul_assoc, exchangeSign_mul_self]
|
||
simp
|
||
| some n =>
|
||
rw [wick_term_some_eq_wick_term_optionEraseZ _ _ _ _ _
|
||
(fun k => hlt k) (fun k a => hn k a)]
|
||
simp only [uncontractedStatesEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some',
|
||
Function.comp_apply, finCongr_apply, Algebra.smul_mul_assoc, instCommGroup.eq_1, smul_smul]
|
||
congr 1
|
||
· rw [← mul_assoc, exchangeSign_mul_self]
|
||
rw [one_mul]
|
||
· rw [← mul_assoc]
|
||
congr 1
|
||
have ht := (WickContraction.timeContract φsΛ).prop
|
||
rw [@Subalgebra.mem_center_iff] at ht
|
||
rw [ht]
|
||
|
||
/-!
|
||
|
||
## Wick's theorem
|
||
|
||
-/
|
||
|
||
/-- Wick's theorem for the empty list. -/
|
||
lemma wicks_theorem_nil :
|
||
𝓣(ofFieldOpList (𝓕 := 𝓕) []) = ∑ (nilΛ : WickContraction [].length),
|
||
(nilΛ.sign (𝓕 := 𝓕) • nilΛ.timeContract) * 𝓝(ofFieldOpList [nilΛ]ᵘᶜ) := by
|
||
rw [timeOrder_ofFieldOpList_nil]
|
||
simp only [map_one, List.length_nil, Algebra.smul_mul_assoc]
|
||
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
|
||
simp only [List.map_nil]
|
||
have h1 : ofFieldOpList (𝓕 := 𝓕) [] = ofCrAnFieldOpList [] := by
|
||
rw [ofFieldOpList, ofCrAnFieldOpList]
|
||
simp
|
||
rw [h1, normalOrder_ofCrAnFieldOpList]
|
||
simp only [sign, List.length_nil, empty, Finset.univ_eq_empty, instCommGroup.eq_1,
|
||
Fin.getElem_fin, Finset.prod_empty, WickContraction.timeContract, List.get_eq_getElem,
|
||
OneMemClass.coe_one, normalOrderSign_nil, normalOrderList_nil, one_smul, one_mul]
|
||
rfl
|
||
|
||
lemma wicks_theorem_congr {φs φs' : List 𝓕.States} (h : φs = φs') :
|
||
∑ (φsΛ : WickContraction φs.length), (φsΛ.sign • φsΛ.timeContract) * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||
= ∑ (φs'Λ : WickContraction φs'.length), (φs'Λ.sign • φs'Λ.timeContract) *
|
||
𝓝(ofFieldOpList [φs'Λ]ᵘᶜ) := by
|
||
subst h
|
||
simp
|
||
|
||
remark wicks_theorem_context := "
|
||
Wick's theorem is one of the most important results in perturbative quantum field theory.
|
||
It expresses a time-ordered product of fields as a sum of terms consisting of
|
||
time-contractions of pairs of fields multiplied by the normal-ordered product of
|
||
the remaining fields. Wick's theorem is also the precursor to the diagrammatic
|
||
approach to quantum field theory called Feynman diagrams."
|
||
|
||
/-- Wick's theorem for time-ordered products of bosonic and fermionic fields.
|
||
The time ordered product `T(φ₀φ₁…φₙ)` is equal to the sum of terms,
|
||
for all possible Wick contractions `c` of the list of fields `φs := φ₀φ₁…φₙ`, given by
|
||
the multiple of:
|
||
- The sign corresponding to the number of fermionic-fermionic exchanges one must do
|
||
to put elements in contracted pairs of `c` next to each other.
|
||
- The product of time-contractions of the contracted pairs of `c`.
|
||
- The normal-ordering of the uncontracted fields in `c`.
|
||
-/
|
||
theorem wicks_theorem : (φs : List 𝓕.States) → 𝓣(ofFieldOpList φs) =
|
||
∑ (φsΛ : WickContraction φs.length), (φsΛ.sign • φsΛ.timeContract) * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||
| [] => wicks_theorem_nil
|
||
| φ :: φs => by
|
||
have ih := wicks_theorem (eraseMaxTimeField φ φs)
|
||
conv_lhs => rw [timeOrder_eq_maxTimeField_mul_finset, ih, Finset.mul_sum]
|
||
have h1 : φ :: φs =
|
||
(eraseMaxTimeField φ φs).insertIdx (maxTimeFieldPosFin φ φs) (maxTimeField φ φs) := by
|
||
simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one,
|
||
maxTimeField, insertionSortMin, List.get_eq_getElem]
|
||
erw [insertIdx_eraseIdx_fin]
|
||
conv_rhs => rw [wicks_theorem_congr h1]
|
||
conv_rhs => rw [insertLift_sum]
|
||
apply Finset.sum_congr rfl
|
||
intro c _
|
||
have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center ℂ _)
|
||
(WickContraction.timeContract c).2 (sign (eraseMaxTimeField φ φs) c))
|
||
rw [Algebra.smul_mul_assoc, ← mul_assoc, ht, mul_assoc]
|
||
rw [wick_term_cons_eq_sum_wick_term
|
||
(maxTimeField φ φs) (eraseMaxTimeField φ φs) (maxTimeFieldPosFin φ φs) c]
|
||
trans (1 : ℂ) • ∑ k : Option { x // x ∈ c.uncontracted }, sign
|
||
(List.insertIdx (↑(maxTimeFieldPosFin φ φs)) (maxTimeField φ φs) (eraseMaxTimeField φ φs))
|
||
(c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k) •
|
||
↑((c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).timeContract) *
|
||
𝓝(ofFieldOpList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs))
|
||
(maxTimeField φ φs) (eraseMaxTimeField φ φs)).get
|
||
(c ↩Λ (maxTimeField φ φs) (maxTimeFieldPosFin φ φs) k).uncontractedList))
|
||
swap
|
||
· simp [uncontractedListGet]
|
||
rw [smul_smul]
|
||
simp only [instCommGroup.eq_1, exchangeSign_mul_self, Nat.succ_eq_add_one,
|
||
Algebra.smul_mul_assoc, Fintype.sum_option, timeContract_insertAndContract_none,
|
||
Finset.univ_eq_attach, smul_add, one_smul, uncontractedListGet]
|
||
· exact fun k => timeOrder_maxTimeField _ _ k
|
||
· exact fun k => lt_maxTimeFieldPosFin_not_timeOrder _ _ k
|
||
termination_by φs => φs.length
|
||
|
||
end FieldSpecification
|