PhysLean/HepLean/Tensors/Tree/Basic.lean

530 lines
26 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Iso
import HepLean.Tensors.OverColor.Discrete
import HepLean.Tensors.OverColor.Lift
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
/-!
## Tensor trees
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
/-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors,
complex Lorentz tensors.
Note: This structure is not fully defined yet. -/
structure TensorStruct where
/-- The colors of indices e.g. up or down. -/
C : Type
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,). -/
G : Type
/-- An instance of `G` as a group. -/
G_group : Group G
/-- The field over which we want to consider the tensors to live in, usually `` or ``. -/
k : Type
/-- An instance of `k` as a commutative ring. -/
k_commRing : CommRing k
/-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors
`X → C`. -/
FDiscrete : Discrete C ⥤ Rep k G
/-- A map from `C` to `C`. An involution. -/
τ : C → C
τ_involution : Function.Involutive τ
/-- The natural transformation describing contraction. -/
contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
/-- The natural transformation describing the metric. -/
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete
/-- The natural transformation describing the unit. -/
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ
/-- A specification of the dimension of each color in C. This will be used for explicit
evaluation of tensors. -/
evalNo : C →
noncomputable section
namespace TensorStruct
open OverColor
variable (S : TensorStruct)
instance : CommRing S.k := S.k_commRing
instance : Group S.G := S.G_group
/-- The lift of the functor `S.F` to a monoidal functor. -/
def F : MonoidalFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete
lemma F_def : F S = (OverColor.lift).obj S.FDiscrete := rfl
lemma perm_contr_cond {n : } {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
S.τ (c ((Hom.toEquiv σ).symm i)) := by
have h1 := Hom.toEquiv_comp_apply σ
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
rw [h1, h1]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
rw [← h]
congr
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
erw [Equiv.apply_symm_apply]
rw [HepLean.Fin.succsAbove_predAboveI]
erw [Equiv.apply_symm_apply]
simp only [Nat.succ_eq_add_one, ne_eq]
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/
def contrFin1Fin1 {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
(OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by
apply (S.F.mapIso
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
apply (S.F.μIso _ _).symm.trans
apply tensorIso ?_ ?_
· symm
apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
rfl
· symm
apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
simp [h]
lemma contrFin1Fin1_inv_tmul {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : S.FDiscrete.obj { as := c i })
(y : S.FDiscrete.obj { as := S.τ (c i) }) :
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp [h]))).hom y) := by
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
Fin.isValue]
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k]
((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
erw [OverColor.forgetLiftAppV_symm_apply,
OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))]
change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
(((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun _ => c i)
(OverColor.mk fun _ => S.τ (c i))).hom
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete]
change ((OverColor.lift.obj S.FDiscrete).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [OverColor.lift.map_tprod S.FDiscrete]
change ((OverColor.lift.obj S.FDiscrete).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((PiTensorProduct.tprod S.k _)) = _
rw [OverColor.lift.map_tprod S.FDiscrete]
apply congrArg
funext r
match r with
| Sum.inl 0 =>
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
LinearEquiv.ofLinear_apply]
rfl
lemma contrFin1Fin1_hom_hom_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (k : Fin 1 ⊕ Fin 1) → (S.FDiscrete.obj
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FDiscrete.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
(PiTensorProduct.tprod S.k x)
· rfl
erw [← LinearEquiv.eq_symm_apply]
erw [contrFin1Fin1_inv_tmul]
congr
funext i
match i with
| Sum.inl 0 =>
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as]
change _ = ((S.FDiscrete.map (eqToHom _)) ≫ (S.FDiscrete.map (eqToHom _))).hom (x (Sum.inr 0))
rw [← Functor.map_comp]
simp
exact h
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
def contrIso {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
lemma contrIso_hom_hom {n : } {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
(S.contrIso c1 i j h).hom.hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
rfl
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
--/
def contrMap {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ⟶
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.contrIso c i j h).hom ≫
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
lemma contrMap_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (i : Fin n.succ.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
(S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
rw [contrMap, contrIso]
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
change (λ_ ((lift.obj S.FDiscrete).obj _)).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
(((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
((PiTensorProduct.tprod S.k) x)))))) = _
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso (OverColor.mk
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((lift.obj S.FDiscrete).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _)
((lift.discreteFunctorMapEqIso S.FDiscrete _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
rw [lift.μIso_inv_tprod]
change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
((lift.obj S.FDiscrete).map (mkIso _).hom).hom)
(((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _)
((lift.discreteFunctorMapEqIso S.FDiscrete _) (x
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
rw [TensorProduct.map_tmul]
rw [contrFin1Fin1_hom_hom_tprod]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
congr 1
/- The contraction. -/
· simp only [Fin.isValue, castToField]
congr 2
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
change (S.FDiscrete.map (eqToHom _)).hom
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
simp only [Nat.succ_eq_add_one, Fin.isValue]
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
(S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) =
(S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by
subst hbd
rfl
refine h1' ?_ ?_ ?_
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
simp [h]
/- The tensor. -/
· erw [lift.map_tprod]
apply congrArg
funext d
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
change (S.FDiscrete.map (eqToHom _)).hom
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
simp only [Nat.succ_eq_add_one]
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
have h1' {a b : Fin n.succ.succ} (h : a = b) :
(S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
exact h1' h1
end TensorStruct
/-- A syntax tree for tensor expressions. -/
inductive TensorTree (S : TensorStruct) : ∀ {n : }, (Fin n → S.C) → Type where
/-- A general tensor node. -/
| tensorNode {n : } {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c
/-- A node consisting of a single vector. -/
| vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c]
/-- A node consisting of a two tensor. -/
| twoNode {c1 c2 : S.C}
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
TensorTree S ![c1, c2]
/-- A node consisting of a three tensor. -/
| threeNode {c1 c2 c3 : S.C}
(v : S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3]
/-- A general constant node. -/
| constNode {n : } {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) :
TensorTree S c
/-- A constant vector. -/
| constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) :
TensorTree S ![c]
/-- A constant two tensor (e.g. metric and unit). -/
| constTwoNode {c1 c2 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
TensorTree S ![c1, c2]
/-- A constant three tensor (e.g. Pauli-matrices). -/
| constThreeNode {c1 c2 c3 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3]
/-- A node corresponding to the addition of two tensors. -/
| add {n : } {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c
/-- A node corresponding to the permutation of indices of a tensor. -/
| perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1
| prod {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm)
| smul {n : } {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c
/-- The negative of a node. -/
| neg {n : } {c : Fin n → S.C} : TensorTree S c → TensorTree S c
| contr {n : } {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
| eval {n : } {c : Fin n.succ → S.C} :
(i : Fin n.succ) → (x : Fin (S.evalNo (c i))) → TensorTree S c →
TensorTree S (c ∘ Fin.succAbove i)
namespace TensorTree
variable {S : TensorStruct} {n : } {c : Fin n → S.C} (T : TensorTree S c)
open MonoidalCategory
open TensorProduct
/-- The node `twoNode` of a tensor tree, with all arguments explicit. -/
abbrev twoNodeE (S : TensorStruct) (c1 c2 : S.C)
(v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) :
TensorTree S ![c1, c2] := twoNode v
/-- The node `constTwoNodeE` of a tensor tree, with all arguments explicit. -/
abbrev constTwoNodeE (S : TensorStruct) (c1 c2 : S.C)
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
TensorTree S ![c1, c2] := constTwoNode v
/-- The node `constThreeNodeE` of a tensor tree, with all arguments explicit. -/
abbrev constThreeNodeE (S : TensorStruct) (c1 c2 c3 : S.C)
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗
S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] :=
constThreeNode v
/-- The number of nodes in a tensor tree. -/
def size : ∀ {n : } {c : Fin n → S.C}, TensorTree S c → := fun
| tensorNode _ => 1
| vecNode _ => 1
| twoNode _ => 1
| threeNode _ => 1
| constNode _ => 1
| constVecNode _ => 1
| constTwoNode _ => 1
| constThreeNode _ => 1
| add t1 t2 => t1.size + t2.size + 1
| perm _ t => t.size + 1
| neg t => t.size + 1
| smul _ t => t.size + 1
| prod t1 t2 => t1.size + t2.size + 1
| contr _ _ _ t => t.size + 1
| eval _ _ t => t.size + 1
noncomputable section
/-- The underlying tensor a tensor tree corresponds to.
Note: This function is not fully defined yet. -/
def tensor : ∀ {n : } {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
| tensorNode t => t
| constTwoNode t => (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (t.hom (1 : S.k))
| add t1 t2 => t1.tensor + t2.tensor
| perm σ t => (S.F.map σ).hom t.tensor
| neg t => - t.tensor
| smul a t => a • t.tensor
| prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor))
| contr i j h t => (S.contrMap _ i j h).hom t.tensor
| _ => 0
/-!
## Tensor on different nodes.
-/
@[simp]
lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) :
(tensorNode T).tensor = T := rfl
@[simp]
lemma constTwoNode_tensor {c1 c2 : S.C}
(v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) :
(constTwoNode v).tensor =
(OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) :=
rfl
lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1)
(t2 : TensorTree S c2) :
(prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom
((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl
lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl
lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) :
(perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl
lemma contr_tensor {n : } {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ}
{h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) :
(contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl
lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl
/-!
## Equality of tensors and rewrites.
-/
lemma contr_tensor_eq {n : } {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c}
(h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ}
{h' : c (i.succAbove j) = S.τ (c i)} :
(contr i j h' T1).tensor = (contr i j h' T2).tensor := by
simp only [Nat.succ_eq_add_one, contr_tensor]
rw [h]
lemma prod_tensor_eq_fst {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
{T1 T1' : TensorTree S c} { T2 : TensorTree S c1}
(h : T1.tensor = T1'.tensor) :
(prod T1 T2).tensor = (prod T1' T2).tensor := by
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj]
rw [h]
lemma prod_tensor_eq_snd {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
{T1 : TensorTree S c} {T2 T2' : TensorTree S c1}
(h : T2.tensor = T2'.tensor) :
(prod T1 T2).tensor = (prod T1 T2').tensor := by
simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj]
rw [h]
lemma perm_tensor_eq {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
{σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {T1 T2 : TensorTree S c}
(h : T1.tensor = T2.tensor) :
(perm σ T1).tensor = (perm σ T2).tensor := by
simp only [perm_tensor]
rw [h]
end
end TensorTree
end