90 lines
3.3 KiB
Text
90 lines
3.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.Tensors.Tree.Elab
|
||
import HepLean.Tensors.ComplexLorentz.Basic
|
||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||
/-!
|
||
|
||
## Lemmas related to complex Lorentz tensors.
|
||
|
||
-/
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open MonoidalCategory
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open IndexNotation
|
||
open CategoryTheory
|
||
open TensorTree
|
||
open OverColor.Discrete
|
||
noncomputable section
|
||
|
||
namespace Fermion
|
||
|
||
lemma coMetric_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
|
||
(PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inl 0))
|
||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inl 0)) (fun i => i.elim0) i) i) :
|
||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
|
||
- (PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 0))
|
||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 0)) (fun i => i.elim0) i) i) :
|
||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
|
||
- (PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 1))
|
||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 1)) (fun i => i.elim0) i) i) :
|
||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down]))
|
||
- (PiTensorProduct.tprod ℂ (fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 2))
|
||
(fun i => Fin.cases (Lorentz.complexCoBasis (Sum.inr 2)) (fun i => i.elim0) i) i) :
|
||
complexLorentzTensor.F.obj (OverColor.mk ![Color.down, Color.down])) := by
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
|
||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Functor.id_obj, Fin.isValue]
|
||
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
|
||
simp only [Fin.isValue, map_sub]
|
||
congr 1
|
||
congr 1
|
||
congr 1
|
||
all_goals
|
||
erw [pairIsoSep_tmul]
|
||
rfl
|
||
|
||
lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ := by
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, perm_tensor]
|
||
rw [coMetric_expand]
|
||
simp only [TensorStruct.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
|
||
map_sub]
|
||
congr 1
|
||
congr 1
|
||
congr 1
|
||
all_goals
|
||
erw [OverColor.lift.map_tprod]
|
||
apply congrArg
|
||
funext i
|
||
match i with
|
||
| (0 : Fin 2) => rfl
|
||
| (1 : Fin 2) => rfl
|
||
|
||
/-
|
||
lemma coMetric_prod_antiSymm (A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V)
|
||
(S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V)
|
||
(hA : (twoNodeE complexLorentzTensor Color.up Color.up A).tensor =
|
||
(TensorTree.neg (perm
|
||
(OverColor.equivToHomEq (Equality.finMapToEquiv ![1, 0] ![1, 0]) (by decide))
|
||
(twoNodeE complexLorentzTensor Color.up Color.up A))).tensor)
|
||
(hs : {S | μ ν = S | ν μ}ᵀ) : {A | μ ν ⊗ S | μ ν}ᵀ.tensor = 0 := by
|
||
have h1 : {A | μ ν ⊗ S | μ ν}ᵀ.tensor = - {A | μ ν ⊗ S | μ ν}ᵀ.tensor := by
|
||
nth_rewrite 1 [contr_tensor_eq (contr_tensor_eq (prod_tensor_eq_fst hA))]
|
||
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
|
||
rw [contr_tensor_eq (neg_contr _)]
|
||
rw [neg_contr]
|
||
rw [neg_tensor]
|
||
apply congrArg
|
||
sorry
|
||
sorry
|
||
-/
|
||
end Fermion
|
||
|
||
end
|