PhysLean/HepLean/Lorentz/ComplexTensor/Metrics/Basis.lean
2025-02-10 10:59:09 +00:00

207 lines
8.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Lorentz.ComplexTensor.Metrics.Basic
import HepLean.Lorentz.ComplexTensor.Basis
/-!
## Metrics and basis expansions
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace complexLorentzTensor
/-- The expansion of the Lorentz covariant metric in terms of basis vectors. -/
lemma coMetric_basis_expand : {η' | μ ν}ᵀ.tensor =
basisVector ![Color.down, Color.down] (fun _ => 0)
- basisVector ![Color.down, Color.down] (fun _ => 1)
- basisVector ![Color.down, Color.down] (fun _ => 2)
- basisVector ![Color.down, Color.down] (fun _ => 3) := by
rw [tensorNode_coMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
all_goals
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexCoBasisFin4 _
simp only [Fin.isValue, Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
/-- Provides the explicit expansion of the co-metric tensor in terms of the basis elements, as
a tensor tree. -/
lemma coMetric_basis_expand_tree : {η' | μ ν}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 0))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 1)))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 2)))) <|
(smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 3))))).tensor :=
coMetric_basis_expand
/-- The expansion of the Lorentz contravariant metric in terms of basis vectors. -/
lemma contrMatrix_basis_expand : {η | μ ν}ᵀ.tensor =
basisVector ![Color.up, Color.up] (fun _ => 0)
- basisVector ![Color.up, Color.up] (fun _ => 1)
- basisVector ![Color.up, Color.up] (fun _ => 2)
- basisVector ![Color.up, Color.up] (fun _ => 3) := by
rw [tensorNode_contrMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
erw [Lorentz.contrMetric_apply_one, Lorentz.contrMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
all_goals
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexContrBasisFin4 _
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
/-- The expansion of the Lorentz contravariant metric in terms of basis vectors as
a structured tensor tree. -/
lemma contrMatrix_basis_expand_tree : {η | μ ν}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 0))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 1)))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 2)))) <|
(smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 3))))).tensor :=
contrMatrix_basis_expand
/-- The expansion of the Fermionic left metric in terms of basis vectors. -/
lemma leftMetric_expand : {εL | α β}ᵀ.tensor =
- basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)
+ basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0) := by
rw [tensorNode_leftMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.leftMetric_apply_one, Fermion.leftMetricVal_expand_tmul]
simp only [Fin.isValue, map_add, map_neg]
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
/-- The expansion of the Fermionic left metric in terms of basis vectors as a structured
tensor tree. -/
lemma leftMetric_expand_tree : {εL | α β}ᵀ.tensor =
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL]
(fun | 0 => 0 | 1 => 1)))) <|
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
leftMetric_expand
/-- The expansion of the Fermionic alt-left metric in terms of basis vectors. -/
lemma altLeftMetric_expand : {εL' | α β}ᵀ.tensor =
basisVector ![Color.downL, Color.downL] (fun | 0 => 0 | 1 => 1)
- basisVector ![Color.downL, Color.downL] (fun | 0 => 1 | 1 => 0) := by
rw [tensorNode_altLeftMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.altLeftMetric_apply_one, Fermion.altLeftMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
/-- The expansion of the Fermionic alt-left metric in terms of basis vectors as a
structured tensor tree. -/
lemma altLeftMetric_expand_tree : {εL' | α β}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL]
(fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL]
(fun | 0 => 1 | 1 => 0))))).tensor :=
altLeftMetric_expand
/-- The expansion of the Fermionic right metric in terms of basis vectors. -/
lemma rightMetric_expand : {εR | α β}ᵀ.tensor =
- basisVector ![Color.upR, Color.upR] (fun | 0 => 0 | 1 => 1)
+ basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0) := by
rw [tensorNode_rightMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.rightMetric_apply_one, Fermion.rightMetricVal_expand_tmul]
simp only [Fin.isValue, map_add, map_neg]
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
/-- The expansion of the Fermionic right metric in terms of basis vectors as a
structured tensor tree. -/
lemma rightMetric_expand_tree : {εR | α β}ᵀ.tensor =
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR]
(fun | 0 => 0 | 1 => 1)))) <|
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
rightMetric_expand
/-- The expansion of the Fermionic alt-right metric in terms of basis vectors. -/
lemma altRightMetric_expand : {εR' | α β}ᵀ.tensor =
basisVector ![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1)
- basisVector ![Color.downR, Color.downR] (fun | 0 => 1 | 1 => 0) := by
rw [tensorNode_altRightMetric]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.altRightMetric_apply_one, Fermion.altRightMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
/-- The expansion of the Fermionic alt-right metric in terms of basis vectors as a
structured tensor tree. -/
lemma altRightMetric_expand_tree : {εR' | α β}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector
![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR]
(fun | 0 => 1 | 1 => 0))))).tensor :=
altRightMetric_expand
end complexLorentzTensor