401 lines
14 KiB
Text
401 lines
14 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzTensor.Real.Basic
|
||
import HepLean.SpaceTime.LorentzTensor.Real.LorentzAction
|
||
import HepLean.SpaceTime.LorentzTensor.Real.Multiplication
|
||
/-!
|
||
|
||
# Constructors for real Lorentz tensors
|
||
|
||
In this file we will constructors of real Lorentz tensors from real numbers,
|
||
vectors and matrices.
|
||
|
||
We will derive properties of these constructors.
|
||
|
||
-/
|
||
|
||
namespace RealLorentzTensor
|
||
/-!
|
||
|
||
# Tensors from and to the reals
|
||
|
||
An important point that we shall see here is that there is a well defined map
|
||
to the real numbers, i.e. which is invariant under transformations of mapIso.
|
||
|
||
-/
|
||
|
||
/-- An equivalence from Real tensors on an empty set to `ℝ`. -/
|
||
@[simps!]
|
||
def toReal (d : ℕ) {X : Type} (h : IsEmpty X) : RealLorentzTensor d X ≃ ℝ where
|
||
toFun := fun T => T.coord (IsEmpty.elim h)
|
||
invFun := fun r => {
|
||
color := fun x => IsEmpty.elim h x,
|
||
coord := fun _ => r}
|
||
left_inv T := by
|
||
refine ext ?_ ?_
|
||
funext x
|
||
exact IsEmpty.elim h x
|
||
funext a
|
||
change T.coord (IsEmpty.elim h) = _
|
||
apply congrArg
|
||
funext x
|
||
exact IsEmpty.elim h x
|
||
right_inv x := rfl
|
||
|
||
/-- The real number obtained from a tensor is invariant under `mapIso`. -/
|
||
lemma toReal_mapIso (d : ℕ) {X Y : Type} (h : IsEmpty X) (f : X ≃ Y) :
|
||
(mapIso d f).trans (toReal d (Equiv.isEmpty f.symm)) = toReal d h := by
|
||
apply Equiv.ext
|
||
intro x
|
||
simp only [Equiv.trans_apply, toReal_apply, mapIso_apply_color, mapIso_apply_coord]
|
||
apply congrArg
|
||
funext x
|
||
exact IsEmpty.elim h x
|
||
|
||
/-!
|
||
|
||
# Tensors from reals, vectors and matrices
|
||
|
||
Note that that these definitions are not equivariant with respect to an
|
||
action of the Lorentz group. They are provided for constructive purposes.
|
||
|
||
-/
|
||
|
||
/-- A marked 1-tensor with a single up index constructed from a vector.
|
||
|
||
Note: This is not the same as rising indices on `ofVecDown`. -/
|
||
def ofVecUp {d : ℕ} (v : Fin 1 ⊕ Fin d → ℝ) :
|
||
Marked d Empty 1 where
|
||
color := fun _ => Colors.up
|
||
coord := fun i => v <| i <| Sum.inr <| 0
|
||
|
||
/-- A marked 1-tensor with a single down index constructed from a vector.
|
||
|
||
Note: This is not the same as lowering indices on `ofVecUp`. -/
|
||
def ofVecDown {d : ℕ} (v : Fin 1 ⊕ Fin d → ℝ) :
|
||
Marked d Empty 1 where
|
||
color := fun _ => Colors.down
|
||
coord := fun i => v <| i <| Sum.inr <| 0
|
||
|
||
/-- A tensor with two up indices constructed from a matrix.
|
||
|
||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||
def ofMatUpUp {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Marked d Empty 2 where
|
||
color := fun _ => Colors.up
|
||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||
|
||
/-- A tensor with two down indices constructed from a matrix.
|
||
|
||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||
def ofMatDownDown {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Marked d Empty 2 where
|
||
color := fun _ => Colors.down
|
||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||
|
||
/-- A marked 2-tensor with the first index up and the second index down.
|
||
|
||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||
@[simps!]
|
||
def ofMatUpDown {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Marked d Empty 2 where
|
||
color := fun i => match i with
|
||
| Sum.inr 0 => Colors.up
|
||
| Sum.inr 1 => Colors.down
|
||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||
|
||
/-- A marked 2-tensor with the first index down and the second index up.
|
||
|
||
Note: This is not the same as rising or lowering indices on other `ofMat...`. -/
|
||
def ofMatDownUp {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Marked d Empty 2 where
|
||
color := fun i => match i with
|
||
| Sum.inr 0 => Colors.down
|
||
| Sum.inr 1 => Colors.up
|
||
coord := fun i => m (i (Sum.inr 0)) (i (Sum.inr 1))
|
||
|
||
/-!
|
||
|
||
## Equivalence of `IndexValue` for constructors
|
||
|
||
-/
|
||
|
||
/-- Index values for `ofVecUp v` are equivalent to elements of `Fin 1 ⊕ Fin d`. -/
|
||
def ofVecUpIndexValue (v : Fin 1 ⊕ Fin d → ℝ) :
|
||
IndexValue d (ofVecUp v).color ≃ (Fin 1 ⊕ Fin d) where
|
||
toFun i := i (Sum.inr 0)
|
||
invFun x := fun i => match i with
|
||
| Sum.inr 0 => x
|
||
left_inv i := by
|
||
funext y
|
||
match y with
|
||
| Sum.inr 0 => rfl
|
||
right_inv x := rfl
|
||
|
||
/-- Index values for `ofVecDown v` are equivalent to elements of `Fin 1 ⊕ Fin d`. -/
|
||
def ofVecDownIndexValue (v : Fin 1 ⊕ Fin d → ℝ) :
|
||
IndexValue d (ofVecDown v).color ≃ (Fin 1 ⊕ Fin d) where
|
||
toFun i := i (Sum.inr 0)
|
||
invFun x := fun i => match i with
|
||
| Sum.inr 0 => x
|
||
left_inv i := by
|
||
funext y
|
||
match y with
|
||
| Sum.inr 0 => rfl
|
||
right_inv x := rfl
|
||
|
||
/-- Index values for `ofMatUpUp v` are equivalent to elements of
|
||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||
def ofMatUpUpIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
IndexValue d (ofMatUpUp M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||
invFun x := fun i => match i with
|
||
| Sum.inr 0 => x.1
|
||
| Sum.inr 1 => x.2
|
||
left_inv i := by
|
||
funext y
|
||
match y with
|
||
| Sum.inr 0 => rfl
|
||
| Sum.inr 1 => rfl
|
||
right_inv x := rfl
|
||
|
||
/-- Index values for `ofMatDownDown v` are equivalent to elements of
|
||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||
def ofMatDownDownIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
IndexValue d (ofMatDownDown M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||
invFun x := fun i => match i with
|
||
| Sum.inr 0 => x.1
|
||
| Sum.inr 1 => x.2
|
||
left_inv i := by
|
||
funext y
|
||
match y with
|
||
| Sum.inr 0 => rfl
|
||
| Sum.inr 1 => rfl
|
||
right_inv x := rfl
|
||
|
||
/-- Index values for `ofMatUpDown v` are equivalent to elements of
|
||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||
def ofMatUpDownIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
IndexValue d (ofMatUpDown M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||
invFun x := fun i => match i with
|
||
| Sum.inr 0 => x.1
|
||
| Sum.inr 1 => x.2
|
||
left_inv i := by
|
||
funext y
|
||
match y with
|
||
| Sum.inr 0 => rfl
|
||
| Sum.inr 1 => rfl
|
||
right_inv x := rfl
|
||
|
||
/-- Index values for `ofMatDownUp v` are equivalent to elements of
|
||
`(Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d)`. -/
|
||
def ofMatDownUpIndexValue (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
IndexValue d (ofMatDownUp M).color ≃ (Fin 1 ⊕ Fin d) × (Fin 1 ⊕ Fin d) where
|
||
toFun i := (i (Sum.inr 0), i (Sum.inr 1))
|
||
invFun x := fun i => match i with
|
||
| Sum.inr 0 => x.1
|
||
| Sum.inr 1 => x.2
|
||
left_inv i := by
|
||
funext y
|
||
match y with
|
||
| Sum.inr 0 => rfl
|
||
| Sum.inr 1 => rfl
|
||
right_inv x := rfl
|
||
|
||
/-!
|
||
|
||
## Contraction of indices of tensors from matrices
|
||
|
||
-/
|
||
open Matrix
|
||
open Marked
|
||
|
||
/-- Contracting the indices of `ofMatUpDown` returns the trace of the matrix. -/
|
||
lemma contr_ofMatUpDown_eq_trace {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
contr (ofMatUpDown M) (by rfl) = (toReal d instIsEmptyEmpty).symm M.trace := by
|
||
refine ext ?_ rfl
|
||
· funext i
|
||
exact Empty.elim i
|
||
|
||
/-- Contracting the indices of `ofMatDownUp` returns the trace of the matrix. -/
|
||
lemma contr_ofMatDownUp_eq_trace {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
contr (ofMatDownUp M) (by rfl) = (toReal d instIsEmptyEmpty).symm M.trace := by
|
||
refine ext ?_ rfl
|
||
· funext i
|
||
exact Empty.elim i
|
||
|
||
/-!
|
||
|
||
## Multiplication of tensors from vectors and matrices
|
||
|
||
-/
|
||
|
||
/-- Multiplying `ofVecUp` with `ofVecDown` gives the dot product. -/
|
||
@[simp]
|
||
lemma mul_ofVecUp_ofVecDown_eq_dot_prod {d : ℕ} (v₁ v₂ : Fin 1 ⊕ Fin d → ℝ) :
|
||
mul (ofVecUp v₁) (ofVecDown v₂) rfl = (toReal d instIsEmptySum).symm (v₁ ⬝ᵥ v₂) := by
|
||
refine ext ?_ rfl
|
||
· funext i
|
||
exact IsEmpty.elim instIsEmptySum i
|
||
|
||
/-- Multiplying `ofVecDown` with `ofVecUp` gives the dot product. -/
|
||
@[simp]
|
||
lemma mul_ofVecDown_ofVecUp_eq_dot_prod {d : ℕ} (v₁ v₂ : Fin 1 ⊕ Fin d → ℝ) :
|
||
mul (ofVecDown v₁) (ofVecUp v₂) rfl = (toReal d instIsEmptySum).symm (v₁ ⬝ᵥ v₂) := by
|
||
refine ext ?_ rfl
|
||
· funext i
|
||
exact IsEmpty.elim instIsEmptySum i
|
||
|
||
lemma mul_ofMatUpDown_ofVecUp_eq_mulVec {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
|
||
(v : Fin 1 ⊕ Fin d → ℝ) :
|
||
mapIso d ((Equiv.sumEmpty (Empty ⊕ Fin 1) Empty))
|
||
(mul (unmarkFirst $ ofMatUpDown M) (ofVecUp v) rfl) = ofVecUp (M *ᵥ v) := by
|
||
refine ext ?_ rfl
|
||
· funext i
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, mapIso_apply_color, mul_color, Equiv.symm_symm]
|
||
fin_cases i
|
||
rfl
|
||
|
||
lemma mul_ofMatDownUp_ofVecDown_eq_mulVec {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ)
|
||
(v : Fin 1 ⊕ Fin d → ℝ) :
|
||
mapIso d (Equiv.sumEmpty (Empty ⊕ Fin 1) Empty)
|
||
(mul (unmarkFirst $ ofMatDownUp M) (ofVecDown v) rfl) = ofVecDown (M *ᵥ v) := by
|
||
refine ext ?_ rfl
|
||
· funext i
|
||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, mapIso_apply_color, mul_color, Equiv.symm_symm]
|
||
fin_cases i
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## The Lorentz action on constructors
|
||
|
||
-/
|
||
section lorentzAction
|
||
variable {d : ℕ} {X : Type} [Fintype X] [DecidableEq X] (T : RealLorentzTensor d X) (c : X → Colors)
|
||
variable (Λ Λ' : LorentzGroup d)
|
||
|
||
open Matrix
|
||
|
||
/-- The action of the Lorentz group on `ofReal v` is trivial. -/
|
||
@[simp]
|
||
lemma lorentzAction_toReal (h : IsEmpty X) (r : ℝ) :
|
||
Λ • (toReal d h).symm r = (toReal d h).symm r :=
|
||
lorentzAction_on_isEmpty Λ ((toReal d h).symm r)
|
||
|
||
/-- The action of the Lorentz group on `ofVecUp v` is by vector multiplication. -/
|
||
@[simp]
|
||
lemma lorentzAction_ofVecUp (v : Fin 1 ⊕ Fin d → ℝ) :
|
||
Λ • ofVecUp v = ofVecUp (Λ *ᵥ v) := by
|
||
refine ext rfl ?_
|
||
funext i
|
||
erw [lorentzAction_smul_coord]
|
||
simp only [ofVecUp, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||
Finset.prod_empty, one_mul]
|
||
rw [mulVec]
|
||
simp only [Fin.isValue, dotProduct, Finset.univ_unique, Fin.default_eq_zero,
|
||
Finset.sum_singleton]
|
||
erw [Finset.sum_equiv (ofVecUpIndexValue v)]
|
||
intro i
|
||
simp_all only [Finset.mem_univ, Fin.isValue, Equiv.coe_fn_mk]
|
||
intro j _
|
||
simp_all only [Finset.mem_univ, Fin.isValue, Finset.prod_singleton, indexValueIso_refl]
|
||
rfl
|
||
|
||
/-- The action of the Lorentz group on `ofVecDown v` is
|
||
by vector multiplication of the transpose-inverse. -/
|
||
@[simp]
|
||
lemma lorentzAction_ofVecDown (v : Fin 1 ⊕ Fin d → ℝ) :
|
||
Λ • ofVecDown v = ofVecDown ((LorentzGroup.transpose Λ⁻¹) *ᵥ v) := by
|
||
refine ext rfl ?_
|
||
funext i
|
||
erw [lorentzAction_smul_coord]
|
||
simp only [ofVecDown, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||
Finset.prod_empty, one_mul, lorentzGroupIsGroup_inv]
|
||
rw [mulVec]
|
||
simp only [Fin.isValue, dotProduct, Finset.univ_unique, Fin.default_eq_zero,
|
||
Finset.sum_singleton]
|
||
erw [Finset.sum_equiv (ofVecUpIndexValue v)]
|
||
intro i
|
||
simp_all only [Finset.mem_univ, Fin.isValue, Equiv.coe_fn_mk]
|
||
intro j _
|
||
simp_all only [Finset.mem_univ, Fin.isValue, Finset.prod_singleton, indexValueIso_refl]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma lorentzAction_ofMatUpUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Λ • ofMatUpUp M = ofMatUpUp (Λ.1 * M * (LorentzGroup.transpose Λ).1) := by
|
||
refine ext rfl ?_
|
||
funext i
|
||
erw [lorentzAction_smul_coord]
|
||
erw [← Equiv.sum_comp (ofMatUpUpIndexValue M).symm]
|
||
simp only [ofMatUpUp, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||
Finset.prod_empty, one_mul, mul_apply]
|
||
erw [Finset.sum_product]
|
||
rw [Finset.sum_comm]
|
||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||
rw [Finset.sum_mul]
|
||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||
exact mul_right_comm _ _ _
|
||
|
||
@[simp]
|
||
lemma lorentzAction_ofMatDownDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Λ • ofMatDownDown M = ofMatDownDown ((LorentzGroup.transpose Λ⁻¹).1 * M * (Λ⁻¹).1) := by
|
||
refine ext rfl ?_
|
||
funext i
|
||
erw [lorentzAction_smul_coord]
|
||
erw [← Equiv.sum_comp (ofMatDownDownIndexValue M).symm]
|
||
simp only [ofMatDownDown, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||
Finset.prod_empty, one_mul, mul_apply]
|
||
erw [Finset.sum_product]
|
||
rw [Finset.sum_comm]
|
||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||
rw [Finset.sum_mul]
|
||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||
exact mul_right_comm _ _ _
|
||
|
||
@[simp]
|
||
lemma lorentzAction_ofMatUpDown (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Λ • ofMatUpDown M = ofMatUpDown (Λ.1 * M * (Λ⁻¹).1) := by
|
||
refine ext rfl ?_
|
||
funext i
|
||
erw [lorentzAction_smul_coord]
|
||
erw [← Equiv.sum_comp (ofMatUpDownIndexValue M).symm]
|
||
simp only [ofMatUpDown, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||
Finset.prod_empty, one_mul, mul_apply]
|
||
erw [Finset.sum_product]
|
||
rw [Finset.sum_comm]
|
||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||
rw [Finset.sum_mul]
|
||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||
exact mul_right_comm _ _ _
|
||
|
||
@[simp]
|
||
lemma lorentzAction_ofMatDownUp (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) :
|
||
Λ • ofMatDownUp M =
|
||
ofMatDownUp ((LorentzGroup.transpose Λ⁻¹).1 * M * (LorentzGroup.transpose Λ).1) := by
|
||
refine ext rfl ?_
|
||
funext i
|
||
erw [lorentzAction_smul_coord]
|
||
erw [← Equiv.sum_comp (ofMatDownUpIndexValue M).symm]
|
||
simp only [ofMatDownUp, IndexValue, Fin.isValue, Fintype.prod_sum_type, Finset.univ_eq_empty,
|
||
Finset.prod_empty, one_mul, mul_apply]
|
||
erw [Finset.sum_product]
|
||
rw [Finset.sum_comm]
|
||
refine Finset.sum_congr rfl (fun x _ => ?_)
|
||
rw [Finset.sum_mul]
|
||
refine Finset.sum_congr rfl (fun y _ => ?_)
|
||
simp only [Fin.prod_univ_two, Fin.isValue, indexValueIso_refl, IndexValue]
|
||
exact mul_right_comm _ _ _
|
||
|
||
end lorentzAction
|
||
|
||
end RealLorentzTensor
|