70 lines
2.7 KiB
Text
70 lines
2.7 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
|
||
import HepLean.StandardModel.HiggsBoson.GaugeAction
|
||
import Mathlib.LinearAlgebra.Matrix.PosDef
|
||
/-!
|
||
|
||
# Gauge orbits for the 2HDM
|
||
|
||
The main reference for material in this section is https://arxiv.org/pdf/hep-ph/0605184.
|
||
|
||
-/
|
||
|
||
namespace TwoHDM
|
||
|
||
open StandardModel
|
||
open ComplexConjugate
|
||
open HiggsField
|
||
|
||
noncomputable section
|
||
|
||
/-- For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||
defined by `((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂))`. -/
|
||
def prodMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
!![⟪Φ1, Φ1⟫_H x, ⟪Φ2, Φ1⟫_H x; ⟪Φ1, Φ2⟫_H x, ⟪Φ2, Φ2⟫_H x]
|
||
|
||
/-- The 2 x 2 complex matrices made up of components of the two Higgs fields. -/
|
||
def fieldCompMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
!![Φ1 x 0, Φ1 x 1; Φ2 x 0, Φ2 x 1]
|
||
|
||
/-- The matrix `prodMatrix Φ1 Φ2 x` is equal to the square of `fieldCompMatrix Φ1 Φ2 x`. -/
|
||
lemma prodMatrix_eq_fieldCompMatrix_sq (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||
prodMatrix Φ1 Φ2 x = fieldCompMatrix Φ1 Φ2 x * (fieldCompMatrix Φ1 Φ2 x).conjTranspose := by
|
||
rw [fieldCompMatrix]
|
||
trans !![Φ1 x 0, Φ1 x 1; Φ2 x 0, Φ2 x 1] *
|
||
!![conj (Φ1 x 0), conj (Φ2 x 0); conj (Φ1 x 1), conj (Φ2 x 1)]
|
||
· rw [Matrix.mul_fin_two, prodMatrix, innerProd_expand', innerProd_expand', innerProd_expand',
|
||
innerProd_expand']
|
||
funext i j
|
||
fin_cases i <;> fin_cases j <;> ring_nf
|
||
· funext i j
|
||
fin_cases i <;> fin_cases j <;> rfl
|
||
|
||
local instance : PartialOrder ℂ := Complex.partialOrder
|
||
|
||
/-- The matrix `prodMatrix` is positive semi-definite. -/
|
||
lemma prodMatrix_posSemiDef (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||
(prodMatrix Φ1 Φ2 x).PosSemidef := by
|
||
rw [Matrix.posSemidef_iff_eq_transpose_mul_self]
|
||
use (fieldCompMatrix Φ1 Φ2 x).conjTranspose
|
||
simpa using prodMatrix_eq_fieldCompMatrix_sq Φ1 Φ2 x
|
||
|
||
/-- The matrix `prodMatrix` is hermitian. -/
|
||
lemma prodMatrix_hermitian (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||
(prodMatrix Φ1 Φ2 x).IsHermitian := (prodMatrix_posSemiDef Φ1 Φ2 x).isHermitian
|
||
|
||
informal_lemma prodMatrix_smooth where
|
||
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
|
||
deps :≈ [``prodMatrix]
|
||
|
||
informal_lemma prodMatrix_invariant where
|
||
math :≈ "The map ``prodMatrix is invariant under the simultanous action of ``gaugeAction
|
||
on the two Higgs fields."
|
||
deps :≈ [``prodMatrix, ``gaugeAction]
|
||
|
||
end
|
||
end TwoHDM
|