PhysLean/HepLean/SpaceTime/LorentzGroup/Basic.lean
2024-05-17 15:28:05 -04:00

151 lines
4.9 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Metric
import HepLean.SpaceTime.FourVelocity
import Mathlib.GroupTheory.SpecificGroups.KleinFour
/-!
# The Lorentz Group
We define the Lorentz group.
## TODO
- Show that the Lorentz is a Lie group.
- Prove that the restricted Lorentz group is equivalent to the connected component of the
identity.
- Define the continuous maps from `ℝ³` to `restrictedLorentzGroup` defining boosts.
## References
- http://home.ku.edu.tr/~amostafazadeh/phys517_518/phys517_2016f/Handouts/A_Jaffi_Lorentz_Group.pdf
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ) : Prop :=
∀ (x y : spaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y
namespace PreservesηLin
variable (Λ : Matrix (Fin 4) (Fin 4) )
lemma iff_on_right : PreservesηLin Λ ↔
∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
apply Iff.intro
intro h
intro x y
have h1 := h x y
rw [ηLin_mulVec_left, mulVec_mulVec] at h1
exact h1
intro h
intro x y
rw [ηLin_mulVec_left, mulVec_mulVec]
exact h x y
lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by
rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)]
apply Iff.intro
· simp_all [ηLin, implies_true, iff_true, one_mulVec]
· simp_all only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply,
mulVec_mulVec, implies_true]
lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by
rw [iff_matrix]
apply Iff.intro
intro h
exact mul_eq_one_comm.mp h
intro h
exact mul_eq_one_comm.mp h
lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
apply Iff.intro
intro h
have h1 := congrArg transpose ((iff_matrix Λ).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one] at h1
rw [iff_matrix' Λ.transpose, ← h1]
repeat rw [← mul_assoc]
intro h
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1
rw [iff_matrix', ← h1]
repeat rw [← mul_assoc]
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) :=
⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩
end PreservesηLin
/-- The Lorentz group as a subgroup of the general linear group over the reals. -/
def lorentzGroup : Subgroup (GL (Fin 4) ) where
carrier := {Λ | PreservesηLin Λ}
mul_mem' {a b} := by
intros ha hb x y
simp only [Units.val_mul, mulVec_mulVec]
rw [← mulVec_mulVec, ← mulVec_mulVec, ha, hb]
one_mem' := by
intros x y
simp
inv_mem' {a} := by
intros ha x y
simp only [coe_units_inv, ← ha ((a.1⁻¹) *ᵥ x) ((a.1⁻¹) *ᵥ y), mulVec_mulVec]
have hx : (a.1 * (a.1)⁻¹) = 1 := by
simp only [@Units.mul_eq_one_iff_inv_eq, coe_units_inv]
simp [hx]
/-- The Lorentz group is a topological group with the subset topology. -/
instance : TopologicalGroup lorentzGroup :=
Subgroup.instTopologicalGroupSubtypeMem lorentzGroup
/-- The lift of a matrix perserving `ηLin` to a Lorentz Group element. -/
def PreservesηLin.liftLor {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) :
lorentzGroup := ⟨liftGL h, h⟩
namespace lorentzGroup
lemma mem_iff (Λ : GL (Fin 4) ): Λ ∈ lorentzGroup ↔ PreservesηLin Λ := by
rfl
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
def transpose (Λ : lorentzGroup) : lorentzGroup :=
PreservesηLin.liftLor ((PreservesηLin.iff_transpose Λ.1).mp Λ.2)
/-- The continuous map from `GL (Fin 4) ` to `Matrix (Fin 4) (Fin 4) ` whose kernal is
the Lorentz group. -/
def kernalMap : C(GL (Fin 4) , Matrix (Fin 4) (Fin 4) ) where
toFun Λ := η * Λ.1ᵀ * η * Λ.1
continuous_toFun := by
apply Continuous.mul _ Units.continuous_val
apply Continuous.mul _ continuous_const
exact Continuous.mul continuous_const (Continuous.matrix_transpose (Units.continuous_val))
lemma kernalMap_kernal_eq_lorentzGroup : lorentzGroup = kernalMap ⁻¹' {1} := by
ext Λ
erw [mem_iff Λ, PreservesηLin.iff_matrix]
rfl
/-- The Lorentz Group is a closed subset of `GL (Fin 4) `. -/
theorem isClosed_of_GL4 : IsClosed (lorentzGroup : Set (GL (Fin 4) )) := by
rw [kernalMap_kernal_eq_lorentzGroup]
exact continuous_iff_isClosed.mp kernalMap.2 {1} isClosed_singleton
end lorentzGroup
end spaceTime