PhysLean/HepLean/FeynmanDiagrams/Wick/String.lean
2024-11-22 15:12:06 +00:00

110 lines
4.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.FeynmanDiagrams.Basic
/-!
# Wick strings
Currently this file is only for an example of Wick strings, correpsonding to a
theory with two complex scalar fields. The concepts will however generalize.
A wick string is defined to be a sequence of input fields,
followed by a squence of vertices, followed by a sequence of output fields.
A wick string can be combined with an appropriate map to spacetime to produce a specific
term in the ring of operators. This has yet to be implemented.
-/
namespace TwoComplexScalar
open CategoryTheory
open FeynmanDiagram
open PreFeynmanRule
/-- The colors of edges which one can associate with a vertex for a theory
with two complex scalar fields. -/
inductive 𝓔 where
/-- Corresponds to the first complex scalar field flowing out of a vertex. -/
| complexScalarOut₁ : 𝓔
/-- Corresponds to the first complex scalar field flowing into a vertex. -/
| complexScalarIn₁ : 𝓔
/-- Corresponds to the second complex scalar field flowing out of a vertex. -/
| complexScalarOut₂ : 𝓔
/-- Corresponds to the second complex scalar field flowing into a vertex. -/
| complexScalarIn₂ : 𝓔
/-- The map taking each color to it's dual, specifying how we can contract edges. -/
def ξ : 𝓔𝓔
| 𝓔.complexScalarOut₁ => 𝓔.complexScalarIn₁
| 𝓔.complexScalarIn₁ => 𝓔.complexScalarOut₁
| 𝓔.complexScalarOut₂ => 𝓔.complexScalarIn₂
| 𝓔.complexScalarIn₂ => 𝓔.complexScalarOut₂
/-- The function `ξ` is an involution. -/
lemma ξ_involutive : Function.Involutive ξ := by
intro x
match x with
| 𝓔.complexScalarOut₁ => rfl
| 𝓔.complexScalarIn₁ => rfl
| 𝓔.complexScalarOut₂ => rfl
| 𝓔.complexScalarIn₂ => rfl
/-- The vertices associated with two complex scalars.
We call this type, the type of vertex colors. -/
inductive 𝓥 where
| φ₁φ₁φ₂φ₂ : 𝓥
| φ₁φ₁φ₁φ₁ : 𝓥
| φ₂φ₂φ₂φ₂ : 𝓥
/-- To each vertex, the association of the number of edges. -/
@[nolint unusedArguments]
def 𝓥NoEdges : 𝓥 := fun _ => 4
/-- To each vertex, associates the indexing map of half-edges associated with that edge. -/
def 𝓥Edges (v : 𝓥) : Fin (𝓥NoEdges v) → 𝓔 :=
match v with
| 𝓥.φ₁φ₁φ₂φ₂ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
| (1 : Fin 4) => 𝓔.complexScalarIn₁
| (2 : Fin 4) => 𝓔.complexScalarOut₂
| (3 : Fin 4) => 𝓔.complexScalarIn₂
| 𝓥.φ₁φ₁φ₁φ₁ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₁
| (1 : Fin 4) => 𝓔.complexScalarIn₁
| (2 : Fin 4) => 𝓔.complexScalarOut₁
| (3 : Fin 4) => 𝓔.complexScalarIn₁
| 𝓥.φ₂φ₂φ₂φ₂ => fun i =>
match i with
| (0 : Fin 4)=> 𝓔.complexScalarOut₂
| (1 : Fin 4) => 𝓔.complexScalarIn₂
| (2 : Fin 4) => 𝓔.complexScalarOut₂
| (3 : Fin 4) => 𝓔.complexScalarIn₂
inductive WickStringLast where
| incoming : WickStringLast
| vertex : WickStringLast
| outgoing : WickStringLast
| final : WickStringLast
open WickStringLast
/-- A wick string is a representation of a string of fields from a theory.
E.g. `φ(x1) φ(x2) φ(y) φ(y) φ(y) φ(x3)`. The use of vertices in the Wick string
allows us to identify which fields have the same space-time coordinate. -/
inductive WickString : {n : } → (c : Fin n → 𝓔) → WickStringLast → Type where
| empty : WickString Fin.elim0 incoming
| incoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) (e : 𝓔) :
WickString (Fin.cons e c) incoming
| endIncoming {n : } {c : Fin n → 𝓔} (w : WickString c incoming) : WickString c vertex
| vertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) (v : 𝓥) :
WickString (Fin.append (𝓥Edges v) c) vertex
| endVertex {n : } {c : Fin n → 𝓔} (w : WickString c vertex) : WickString c outgoing
| outgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) (e : 𝓔) :
WickString (Fin.cons e c) outgoing
| endOutgoing {n : } {c : Fin n → 𝓔} (w : WickString c outgoing) : WickString c final
end TwoComplexScalar