93 lines
3.8 KiB
Text
93 lines
3.8 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.Metric
|
||
import HepLean.SpaceTime.FourVelocity
|
||
import Mathlib.GroupTheory.SpecificGroups.KleinFour
|
||
import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
|
||
/-!
|
||
# Spacetime as a self-adjoint matrix
|
||
|
||
The main result of this file is a linear equivalence `spaceTimeToHerm` between the vector space
|
||
of space-time points and the vector space of 2×2-complex self-adjoint matrices.
|
||
|
||
-/
|
||
namespace spaceTime
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
|
||
/-- A 2×2-complex matrix formed from a space-time point. -/
|
||
@[simp]
|
||
def toMatrix (x : spaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
!![x 0 + x 3, x 1 - x 2 * I; x 1 + x 2 * I, x 0 - x 3]
|
||
|
||
/-- The matrix `x.toMatrix` for `x ∈ spaceTime` is self adjoint. -/
|
||
lemma toMatrix_isSelfAdjoint (x : spaceTime) : IsSelfAdjoint x.toMatrix := by
|
||
rw [isSelfAdjoint_iff, star_eq_conjTranspose, ← Matrix.ext_iff]
|
||
intro i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
simp [toMatrix, conj_ofReal]
|
||
ring
|
||
|
||
/-- A self-adjoint matrix formed from a space-time point. -/
|
||
@[simps!]
|
||
def toSelfAdjointMatrix' (x : spaceTime) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||
⟨x.toMatrix, toMatrix_isSelfAdjoint x⟩
|
||
|
||
/-- A self-adjoint matrix formed from a space-time point. -/
|
||
@[simp]
|
||
noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : spaceTime :=
|
||
![1/2 * (x.1 0 0 + x.1 1 1).re, (x.1 1 0).re, (x.1 1 0).im , (x.1 0 0 - x.1 1 1).re/2]
|
||
|
||
/-- The linear equivalence between the vector-space `spaceTime` and self-adjoint
|
||
2×2-complex matrices. -/
|
||
noncomputable def spaceTimeToHerm : spaceTime ≃ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where
|
||
toFun := toSelfAdjointMatrix'
|
||
invFun := fromSelfAdjointMatrix'
|
||
left_inv x := by
|
||
simp only [fromSelfAdjointMatrix', one_div, Fin.isValue, toSelfAdjointMatrix'_coe, of_apply,
|
||
cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons,
|
||
head_fin_const, add_add_sub_cancel, add_re, ofReal_re, mul_re, I_re, mul_zero, ofReal_im,
|
||
I_im, mul_one, sub_self, add_zero, add_im, mul_im, zero_add, add_sub_sub_cancel,
|
||
half_add_self]
|
||
funext i
|
||
fin_cases i <;> field_simp
|
||
rfl
|
||
rfl
|
||
right_inv x := by
|
||
simp only [toSelfAdjointMatrix', toMatrix, fromSelfAdjointMatrix', one_div, Fin.isValue, add_re,
|
||
sub_re, cons_val_zero, ofReal_mul, ofReal_inv, ofReal_ofNat, ofReal_add, cons_val_three,
|
||
Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, head_cons, ofReal_div, ofReal_sub,
|
||
cons_val_one, cons_val_two, re_add_im]
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal]
|
||
exact conj_eq_iff_re.mp (congrArg (fun M => M 0 0) $ selfAdjoint.mem_iff.mp x.2 )
|
||
have h01 := congrArg (fun M => M 0 1) $ selfAdjoint.mem_iff.mp x.2
|
||
simp only [Fin.isValue, star_apply, RCLike.star_def] at h01
|
||
rw [← h01]
|
||
rw [RCLike.conj_eq_re_sub_im]
|
||
simp only [Fin.isValue, RCLike.re_to_complex, RCLike.im_to_complex, RCLike.I_to_complex]
|
||
rfl
|
||
exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 )
|
||
map_add' x y := by
|
||
simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, add_apply, ofReal_add,
|
||
AddSubmonoid.mk_add_mk, of_add_of, add_cons, head_cons, tail_cons, empty_add_empty,
|
||
Subtype.mk.injEq, EmbeddingLike.apply_eq_iff_eq]
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, add_apply]
|
||
<;> ring
|
||
map_smul' r x := by
|
||
simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, smul_apply, ofReal_mul,
|
||
RingHom.id_apply]
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;>
|
||
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, smul_apply]
|
||
<;> ring
|
||
|
||
end spaceTime
|