PhysLean/HepLean/Lorentz/ComplexTensor/Basic.lean
2024-11-12 05:49:43 +00:00

233 lines
9.4 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Basic
import HepLean.Tensors.Tree.Dot
import HepLean.Lorentz.Weyl.Contraction
import HepLean.Lorentz.Weyl.Metric
import HepLean.Lorentz.Weyl.Unit
import HepLean.Lorentz.ComplexVector.Contraction
import HepLean.Lorentz.ComplexVector.Metric
import HepLean.Lorentz.ComplexVector.Unit
import HepLean.Mathematics.PiTensorProduct
import HepLean.Lorentz.PauliMatrices.AsTensor
/-!
## Complex Lorentz tensors
-/
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open MonoidalCategory
namespace complexLorentzTensor
/-- The colors associated with complex representations of SL(2, ) of intrest to physics. -/
inductive Color
| upL : Color
| downL : Color
| upR : Color
| downR : Color
| up : Color
| down : Color
/-- Color for complex Lorentz tensors is decidable. -/
instance : DecidableEq Color := fun x y =>
match x, y with
| Color.upL, Color.upL => isTrue rfl
| Color.downL, Color.downL => isTrue rfl
| Color.upR, Color.upR => isTrue rfl
| Color.downR, Color.downR => isTrue rfl
| Color.up, Color.up => isTrue rfl
| Color.down, Color.down => isTrue rfl
/- The false -/
| Color.upL, Color.downL => isFalse fun h => Color.noConfusion h
| Color.upL, Color.upR => isFalse fun h => Color.noConfusion h
| Color.upL, Color.downR => isFalse fun h => Color.noConfusion h
| Color.upL, Color.up => isFalse fun h => Color.noConfusion h
| Color.upL, Color.down => isFalse fun h => Color.noConfusion h
| Color.downL, Color.upL => isFalse fun h => Color.noConfusion h
| Color.downL, Color.upR => isFalse fun h => Color.noConfusion h
| Color.downL, Color.downR => isFalse fun h => Color.noConfusion h
| Color.downL, Color.up => isFalse fun h => Color.noConfusion h
| Color.downL, Color.down => isFalse fun h => Color.noConfusion h
| Color.upR, Color.upL => isFalse fun h => Color.noConfusion h
| Color.upR, Color.downL => isFalse fun h => Color.noConfusion h
| Color.upR, Color.downR => isFalse fun h => Color.noConfusion h
| Color.upR, Color.up => isFalse fun h => Color.noConfusion h
| Color.upR, Color.down => isFalse fun h => Color.noConfusion h
| Color.downR, Color.upL => isFalse fun h => Color.noConfusion h
| Color.downR, Color.downL => isFalse fun h => Color.noConfusion h
| Color.downR, Color.upR => isFalse fun h => Color.noConfusion h
| Color.downR, Color.up => isFalse fun h => Color.noConfusion h
| Color.downR, Color.down => isFalse fun h => Color.noConfusion h
| Color.up, Color.upL => isFalse fun h => Color.noConfusion h
| Color.up, Color.downL => isFalse fun h => Color.noConfusion h
| Color.up, Color.upR => isFalse fun h => Color.noConfusion h
| Color.up, Color.downR => isFalse fun h => Color.noConfusion h
| Color.up, Color.down => isFalse fun h => Color.noConfusion h
| Color.down, Color.upL => isFalse fun h => Color.noConfusion h
| Color.down, Color.downL => isFalse fun h => Color.noConfusion h
| Color.down, Color.upR => isFalse fun h => Color.noConfusion h
| Color.down, Color.downR => isFalse fun h => Color.noConfusion h
| Color.down, Color.up => isFalse fun h => Color.noConfusion h
end complexLorentzTensor
noncomputable section
open complexLorentzTensor in
/-- The tensor structure for complex Lorentz tensors. -/
def complexLorentzTensor : TensorSpecies where
C := complexLorentzTensor.Color
G := SL(2, )
G_group := inferInstance
k :=
k_commRing := inferInstance
FD := Discrete.functor fun c =>
match c with
| Color.upL => Fermion.leftHanded
| Color.downL => Fermion.altLeftHanded
| Color.upR => Fermion.rightHanded
| Color.downR => Fermion.altRightHanded
| Color.up => Lorentz.complexContr
| Color.down => Lorentz.complexCo
τ := fun c =>
match c with
| Color.upL => Color.downL
| Color.downL => Color.upL
| Color.upR => Color.downR
| Color.downR => Color.upR
| Color.up => Color.down
| Color.down => Color.up
τ_involution c := by
match c with
| Color.upL => rfl
| Color.downL => rfl
| Color.upR => rfl
| Color.downR => rfl
| Color.up => rfl
| Color.down => rfl
contr := Discrete.natTrans fun c =>
match c with
| Discrete.mk Color.upL => Fermion.leftAltContraction
| Discrete.mk Color.downL => Fermion.altLeftContraction
| Discrete.mk Color.upR => Fermion.rightAltContraction
| Discrete.mk Color.downR => Fermion.altRightContraction
| Discrete.mk Color.up => Lorentz.contrCoContraction
| Discrete.mk Color.down => Lorentz.coContrContraction
metric := Discrete.natTrans fun c =>
match c with
| Discrete.mk Color.upL => Fermion.leftMetric
| Discrete.mk Color.downL => Fermion.altLeftMetric
| Discrete.mk Color.upR => Fermion.rightMetric
| Discrete.mk Color.downR => Fermion.altRightMetric
| Discrete.mk Color.up => Lorentz.contrMetric
| Discrete.mk Color.down => Lorentz.coMetric
unit := Discrete.natTrans fun c =>
match c with
| Discrete.mk Color.upL => Fermion.altLeftLeftUnit
| Discrete.mk Color.downL => Fermion.leftAltLeftUnit
| Discrete.mk Color.upR => Fermion.altRightRightUnit
| Discrete.mk Color.downR => Fermion.rightAltRightUnit
| Discrete.mk Color.up => Lorentz.coContrUnit
| Discrete.mk Color.down => Lorentz.contrCoUnit
repDim := fun c =>
match c with
| Color.upL => 2
| Color.downL => 2
| Color.upR => 2
| Color.downR => 2
| Color.up => 4
| Color.down => 4
repDim_neZero := fun c =>
match c with
| Color.upL => inferInstance
| Color.downL => inferInstance
| Color.upR => inferInstance
| Color.downR => inferInstance
| Color.up => inferInstance
| Color.down => inferInstance
basis := fun c =>
match c with
| Color.upL => Fermion.leftBasis
| Color.downL => Fermion.altLeftBasis
| Color.upR => Fermion.rightBasis
| Color.downR => Fermion.altRightBasis
| Color.up => Lorentz.complexContrBasisFin4
| Color.down => Lorentz.complexCoBasisFin4
contr_tmul_symm := fun c =>
match c with
| Color.upL => Fermion.leftAltContraction_tmul_symm
| Color.downL => Fermion.altLeftContraction_tmul_symm
| Color.upR => Fermion.rightAltContraction_tmul_symm
| Color.downR => Fermion.altRightContraction_tmul_symm
| Color.up => Lorentz.contrCoContraction_tmul_symm
| Color.down => Lorentz.coContrContraction_tmul_symm
contr_unit := fun c =>
match c with
| Color.upL => Fermion.contr_altLeftLeftUnit
| Color.downL => Fermion.contr_leftAltLeftUnit
| Color.upR => Fermion.contr_altRightRightUnit
| Color.downR => Fermion.contr_rightAltRightUnit
| Color.up => Lorentz.contr_coContrUnit
| Color.down => Lorentz.contr_contrCoUnit
unit_symm := fun c =>
match c with
| Color.upL => Fermion.altLeftLeftUnit_symm
| Color.downL => Fermion.leftAltLeftUnit_symm
| Color.upR => Fermion.altRightRightUnit_symm
| Color.downR => Fermion.rightAltRightUnit_symm
| Color.up => Lorentz.coContrUnit_symm
| Color.down => Lorentz.contrCoUnit_symm
contr_metric := fun c =>
match c with
| Color.upL => by simpa using Fermion.leftAltContraction_apply_metric
| Color.downL => by simpa using Fermion.altLeftContraction_apply_metric
| Color.upR => by simpa using Fermion.rightAltContraction_apply_metric
| Color.downR => by simpa using Fermion.altRightContraction_apply_metric
| Color.up => by simpa using Lorentz.contrCoContraction_apply_metric
| Color.down => by simpa using Lorentz.coContrContraction_apply_metric
namespace complexLorentzTensor
/-- Color for complex Lorentz tensors is decidable. -/
instance : DecidableEq complexLorentzTensor.C := complexLorentzTensor.instDecidableEqColor
/-- Contracting two basis elements gives `1` if the index for the basis elements is the same,
and `0` otherwise. Holds for any color of index. -/
lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.repDim c))
(j : Fin (complexLorentzTensor.repDim (complexLorentzTensor.τ c))) :
complexLorentzTensor.castToField
((complexLorentzTensor.contr.app {as := c}).hom
(complexLorentzTensor.basis c i ⊗ₜ complexLorentzTensor.basis (complexLorentzTensor.τ c) j)) =
if i.val = j.val then 1 else 0 :=
match c with
| Color.upL => Fermion.leftAltContraction_basis _ _
| Color.downL => Fermion.altLeftContraction_basis _ _
| Color.upR => Fermion.rightAltContraction_basis _ _
| Color.downR => Fermion.altRightContraction_basis _ _
| Color.up => Lorentz.contrCoContraction_basis _ _
| Color.down => Lorentz.coContrContraction_basis _ _
/-- For any object in the over color category, with source `Fin n`, has a decidable source. -/
instance {n : } {c : Fin n → complexLorentzTensor.C} :
DecidableEq (OverColor.mk c).left := instDecidableEqFin n
/-- For any object in the over color category, with source `Fin n`, has a finite source. -/
instance {n : } {c : Fin n → complexLorentzTensor.C} :
Fintype (OverColor.mk c).left := Fin.fintype n
/-- The equality of two maps in `OverColor C` from objects based on `Fin _` is decidable. -/
instance {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ σ' : OverColor.mk c ⟶ OverColor.mk c1) :
Decidable (σ = σ') :=
decidable_of_iff _ (OverColor.Hom.ext_iff σ σ')
end complexLorentzTensor
end