PhysLean/HepLean/PerturbationTheory/Algebras/CrAnAlgebra/SuperCommute.lean
2025-01-29 12:09:02 +00:00

822 lines
33 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Basic
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.Grading
/-!
# Super Commute
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
namespace CrAnAlgebra
/-!
## The super commutor on the CrAnAlgebra.
-/
open FieldStatistic
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
noncomputable def superCommute : 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra →ₗ[] 𝓕.CrAnAlgebra :=
Basis.constr ofCrAnListBasis fun φs =>
Basis.constr ofCrAnListBasis fun φs' =>
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs)
/-- The super commutor on the creation and annihlation algebra. For two bosonic operators
or a bosonic and fermionic operator this corresponds to the usual commutator
whilst for two fermionic operators this corresponds to the anti-commutator. -/
scoped[FieldSpecification.CrAnAlgebra] notation "[" φs "," φs' "]ₛca" => superCommute φs φs'
/-!
## The super commutor of different types of elements
-/
lemma superCommute_ofCrAnList_ofCrAnList (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca =
ofCrAnList (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList (φs' ++ φs) := by
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
simp only [superCommute, Basis.constr_basis]
lemma superCommute_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
[ofCrAnState φ, ofCrAnState φ']ₛca =
ofCrAnState φ * ofCrAnState φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnState φ' * ofCrAnState φ := by
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
rw [superCommute_ofCrAnList_ofCrAnList, ofCrAnList_append]
congr
rw [ofCrAnList_append]
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
lemma superCommute_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
[ofCrAnList φcas, ofStateList φs]ₛca = ofCrAnList φcas * ofStateList φs -
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofStateList φs * ofCrAnList φcas := by
conv_lhs => rw [ofStateList_sum]
rw [map_sum]
conv_lhs =>
enter [2, x]
rw [superCommute_ofCrAnList_ofCrAnList, CrAnSection.statistics_eq_state_statistics,
ofCrAnList_append, ofCrAnList_append]
rw [Finset.sum_sub_distrib, ← Finset.mul_sum, ← Finset.smul_sum,
← Finset.sum_mul, ← ofStateList_sum]
simp
lemma superCommute_ofStateList_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
[ofStateList φ, ofStateList φs]ₛca = ofStateList φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofStateList φ := by
conv_lhs => rw [ofStateList_sum]
simp only [map_sum, LinearMap.coeFn_sum, Finset.sum_apply, instCommGroup.eq_1,
Algebra.smul_mul_assoc]
conv_lhs =>
enter [2, x]
rw [superCommute_ofCrAnList_ofStatesList]
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofStateList_sum]
lemma superCommute_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
[ofState φ, ofStateList φs]ₛca = ofState φ * ofStateList φs -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs * ofState φ := by
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommute_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
[ofStateList φs, ofState φ]ₛca = ofStateList φs * ofState φ -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs := by
rw [← ofStateList_singleton, superCommute_ofStateList_ofStatesList, ofStateList_singleton]
simp
lemma superCommute_anPart_crPart (φ φ' : 𝓕.States) :
[anPart φ, crPart φ']ₛca =
anPart φ * crPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * anPart φ := by
match φ, φ' with
| States.inAsymp φ, _ =>
simp
| _, States.outAsymp φ =>
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
| States.position φ, States.position φ' =>
simp only [anPart_position, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.inAsymp φ' =>
simp only [anPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
ofCrAnList_append]
| States.outAsymp φ, States.inAsymp φ' =>
simp only [anPart_posAsymp, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_anPart (φ φ' : 𝓕.States) :
[crPart φ, anPart φ']ₛca =
crPart φ * anPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
anPart φ' * crPart φ := by
match φ, φ' with
| States.outAsymp φ, _ =>
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
| _, States.inAsymp φ =>
simp only [anPart_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
sub_self]
| States.position φ, States.position φ' =>
simp only [crPart_position, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.outAsymp φ' =>
simp only [crPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.outAsymp φ' =>
simp only [crPart_negAsymp, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_crPart (φ φ' : 𝓕.States) :
[crPart φ, crPart φ']ₛca =
crPart φ * crPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
crPart φ' * crPart φ := by
match φ, φ' with
| States.outAsymp φ, _ =>
simp only [crPart_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
mul_zero, sub_self]
| _, States.outAsymp φ =>
simp only [crPart_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul, sub_self]
| States.position φ, States.position φ' =>
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.inAsymp φ' =>
simp only [crPart_position, crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.position φ' =>
simp only [crPart_negAsymp, crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.inAsymp φ, States.inAsymp φ' =>
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_anPart_anPart (φ φ' : 𝓕.States) :
[anPart φ, anPart φ']ₛca =
anPart φ * anPart φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
anPart φ' * anPart φ := by
match φ, φ' with
| States.inAsymp φ, _ =>
simp
| _, States.inAsymp φ =>
simp
| States.position φ, States.position φ' =>
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.position φ, States.outAsymp φ' =>
simp only [anPart_position, anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.outAsymp φ, States.position φ' =>
simp only [anPart_posAsymp, anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
| States.outAsymp φ, States.outAsymp φ' =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList]
simp [crAnStatistics, ← ofCrAnList_append]
lemma superCommute_crPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[crPart φ, ofStateList φs]ₛca =
crPart φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofStateList φs *
crPart φ := by
match φ with
| States.inAsymp φ =>
simp only [crPart_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.position φ =>
simp only [crPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.outAsymp φ =>
simp
lemma superCommute_anPart_ofStateList (φ : 𝓕.States) (φs : List 𝓕.States) :
[anPart φ, ofStateList φs]ₛca =
anPart φ * ofStateList φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
ofStateList φs * anPart φ := by
match φ with
| States.inAsymp φ =>
simp
| States.position φ =>
simp only [anPart_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
| States.outAsymp φ =>
simp only [anPart_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofStatesList]
simp [crAnStatistics]
lemma superCommute_crPart_ofState (φ φ' : 𝓕.States) :
[crPart φ, ofState φ']ₛca =
crPart φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPart φ := by
rw [← ofStateList_singleton, superCommute_crPart_ofStateList]
simp
lemma superCommute_anPart_ofState (φ φ' : 𝓕.States) :
[anPart φ, ofState φ']ₛca =
anPart φ * ofState φ' -
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPart φ := by
rw [← ofStateList_singleton, superCommute_anPart_ofStateList]
simp
/-!
## Mul equal superCommute
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
multiplication with a sign plus the super commutor.
-/
lemma ofCrAnList_mul_ofCrAnList_eq_superCommute (φs φs' : List 𝓕.CrAnStates) :
ofCrAnList φs * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnList φs
+ [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList]
simp [ofCrAnList_append]
lemma ofCrAnState_mul_ofCrAnList_eq_superCommute (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
ofCrAnState φ * ofCrAnList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnList φs' * ofCrAnState φ
+ [ofCrAnState φ, ofCrAnList φs']ₛca := by
rw [← ofCrAnList_singleton, ofCrAnList_mul_ofCrAnList_eq_superCommute]
simp
lemma ofStateList_mul_ofStateList_eq_superCommute (φs φs' : List 𝓕.States) :
ofStateList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofStateList φs
+ [ofStateList φs, ofStateList φs']ₛca := by
rw [superCommute_ofStateList_ofStatesList]
simp
lemma ofState_mul_ofStateList_eq_superCommute (φ : 𝓕.States) (φs' : List 𝓕.States) :
ofState φ * ofStateList φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofStateList φs' * ofState φ
+ [ofState φ, ofStateList φs']ₛca := by
rw [superCommute_ofState_ofStatesList]
simp
lemma ofStateList_mul_ofState_eq_superCommute (φs : List 𝓕.States) (φ : 𝓕.States) :
ofStateList φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofStateList φs
+ [ofStateList φs, ofState φ]ₛca := by
rw [superCommute_ofStateList_ofState]
simp
lemma crPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
crPart φ * anPart φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * crPart φ +
[crPart φ, anPart φ']ₛca := by
rw [superCommute_crPart_anPart]
simp
lemma anPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
anPart φ * crPart φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
crPart φ' * anPart φ +
[anPart φ, crPart φ']ₛca := by
rw [superCommute_anPart_crPart]
simp
lemma crPart_mul_crPart_eq_superCommute (φ φ' : 𝓕.States) :
crPart φ * crPart φ' =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPart φ' * crPart φ +
[crPart φ, crPart φ']ₛca := by
rw [superCommute_crPart_crPart]
simp
lemma anPart_mul_anPart_eq_superCommute (φ φ' : 𝓕.States) :
anPart φ * anPart φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPart φ' * anPart φ +
[anPart φ, anPart φ']ₛca := by
rw [superCommute_anPart_anPart]
simp
lemma ofCrAnList_mul_ofStateList_eq_superCommute (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
ofCrAnList φs * ofStateList φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofStateList φs' * ofCrAnList φs
+ [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommute_ofCrAnList_ofStatesList]
simp
/-!
## Symmetry of the super commutor.
-/
lemma superCommute_ofCrAnList_ofCrAnList_symm (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca =
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnList φs', ofCrAnList φs]ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList, superCommute_ofCrAnList_ofCrAnList, smul_sub]
simp only [instCommGroup.eq_1, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
lemma superCommute_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
[ofCrAnState φ, ofCrAnState φ']ₛca =
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnState φ', ofCrAnState φ]ₛca := by
rw [superCommute_ofCrAnState_ofCrAnState, superCommute_ofCrAnState_ofCrAnState]
rw [smul_sub]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, neg_smul, sub_neg_eq_add]
rw [smul_smul]
conv_rhs =>
rhs
rw [exchangeSign_symm, exchangeSign_mul_self]
simp only [one_smul]
abel
/-!
## Splitting the super commutor on lists into sums.
-/
lemma superCommute_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList (φ :: φs')]ₛca =
[ofCrAnList φs, ofCrAnState φ]ₛca * ofCrAnList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
• ofCrAnState φ * [ofCrAnList φs, ofCrAnList φs']ₛca := by
rw [superCommute_ofCrAnList_ofCrAnList]
conv_rhs =>
lhs
rw [← ofCrAnList_singleton, superCommute_ofCrAnList_ofCrAnList, sub_mul, ← ofCrAnList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofCrAnList_append, ofCrAnList_singleton, smul_mul_assoc,
mul_assoc, ← ofCrAnList_append]
conv_rhs =>
rhs
rw [superCommute_ofCrAnList_ofCrAnList, mul_sub, smul_mul_assoc]
simp only [instCommGroup.eq_1, List.cons_append, List.append_assoc, List.nil_append,
Algebra.mul_smul_comm, Algebra.smul_mul_assoc, sub_add_sub_cancel, sub_right_inj]
rw [← ofCrAnList_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp only [instCommGroup, map_mul, mul_comm]
lemma superCommute_ofCrAnList_ofStateList_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnList φs, ofStateList (φ :: φs')]ₛca =
[ofCrAnList φs, ofState φ]ₛca * ofStateList φs' +
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofStateList φs']ₛca := by
rw [superCommute_ofCrAnList_ofStatesList]
conv_rhs =>
lhs
rw [← ofStateList_singleton, superCommute_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
← ofStateList_append]
rhs
rw [FieldStatistic.ofList_singleton, ofStateList_singleton, smul_mul_assoc,
smul_mul_assoc, mul_assoc]
conv_rhs =>
rhs
rw [superCommute_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
sub_add_sub_cancel, sub_right_inj]
rw [ofStateList_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
simp [mul_comm]
/--
Within the creation and annihilation algebra, we have that
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
-/
lemma superCommute_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
(φs' : List 𝓕.CrAnStates) → [ofCrAnList φs, ofCrAnList φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofCrAnList (φs'.take n) * [ofCrAnList φs, ofCrAnState (φs'.get n)]ₛca *
ofCrAnList (φs'.drop (n + 1))
| [] => by
simp [← ofCrAnList_nil, superCommute_ofCrAnList_ofCrAnList]
| φ :: φs' => by
rw [superCommute_ofCrAnList_ofCrAnList_cons, superCommute_ofCrAnList_ofCrAnList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofCrAnList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma superCommute_ofCrAnList_ofStateList_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
[ofCrAnList φs, ofStateList φs']ₛca =
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
ofStateList (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
ofStateList (φs'.drop (n + 1))
| [] => by
simp only [superCommute_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
simp
| φ :: φs' => by
rw [superCommute_ofCrAnList_ofStateList_cons, superCommute_ofCrAnList_ofStateList_eq_sum φs φs']
conv_rhs => erw [Fin.sum_univ_succ]
congr 1
· simp
· simp [Finset.mul_sum, smul_smul, ofStateList_cons, mul_assoc,
FieldStatistic.ofList_cons_eq_mul, mul_comm]
lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
[ofCrAnList φs1, [ofCrAnList φs2, ofCrAnList φs3]ₛca]ₛca =
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs3) •
(- 𝓢(𝓕 |>ₛ φs2, 𝓕 |>ₛ φs3 ) • [ofCrAnList φs3, [ofCrAnList φs1, ofCrAnList φs2]ₛca]ₛca -
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs2) • [ofCrAnList φs2, [ofCrAnList φs3, ofCrAnList φs1]ₛca]ₛca) := by
repeat rw [superCommute_ofCrAnList_ofCrAnList]
simp
repeat rw [superCommute_ofCrAnList_ofCrAnList]
simp only [instCommGroup.eq_1, ofList_append_eq_mul, List.append_assoc]
by_cases h1 : (𝓕 |>ₛ φs1) = bosonic <;>
by_cases h2 : (𝓕 |>ₛ φs2) = bosonic <;>
by_cases h3 : (𝓕 |>ₛ φs3) = bosonic
· simp [h1, h2, exchangeSign_bosonic, h3, mul_one, one_smul]
abel
· simp [h1, h2, exchangeSign_bosonic, bosonic_exchangeSign, mul_one, one_smul]
abel
· simp [h1, bosonic_exchangeSign, h3, exchangeSign_bosonic, mul_one, one_smul]
abel
· simp at h1 h2 h3
simp [h1, h2, h3]
abel
· simp at h1 h2 h3
simp [h1, h2, h3]
abel
· simp at h1 h2 h3
simp [h1, h2, h3]
abel
· simp at h1 h2 h3
simp [h1, h2, h3]
abel
· simp at h1 h2 h3
simp [h1, h2, h3]
abel
/-!
## Interaction with grading.
-/
lemma superCommute_grade {a b : 𝓕.CrAnAlgebra} {f1 f2 : FieldStatistic}
(ha : a ∈ statisticSubmodule f1) (hb : b ∈ statisticSubmodule f2) :
[a, b]ₛca ∈ statisticSubmodule (f1 + f2) := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f2) : Prop :=
[a, a2]ₛca ∈ statisticSubmodule (f1 + f2)
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
simp [p]
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule f1) : Prop :=
[a2 , ofCrAnList φs]ₛca ∈ statisticSubmodule (f1 + f2)
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
apply Submodule.sub_mem _
· apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
· apply Submodule.smul_mem
apply ofCrAnList_mem_statisticSubmodule_of
rw [ofList_append_eq_mul, hφs, hφs']
rw [mul_comm]
· simp [p]
· intro x y hx hy hp1 hp2
simp [p]
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
simp [p]
exact Submodule.smul_mem _ c hp1
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp [p]
exact Submodule.add_mem _ hp1 hp2
· intro c x hx hp1
simp [p]
exact Submodule.smul_mem _ c hp1
· exact hb
lemma superCommute_bosonic_bosonic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a, a2]ₛca = a * a2 - a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_bosonic_fermionic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule bosonic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a, a2]ₛca = a * a2 - a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_fermionic_bonsonic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule bosonic) : Prop :=
[a, a2]ₛca = a * a2 - a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs - ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_bonsonic {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj a]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bosonic_bosonic (by simp) hb, superCommute_fermionic_bonsonic (by simp) hb]
simp only [add_mul, mul_add]
abel
lemma bosonic_superCommute {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
[a, b]ₛca = a * b - b * a := by
rw [← bosonicProj_add_fermionicProj b]
simp only [map_add, LinearMap.add_apply]
rw [superCommute_bosonic_bosonic ha (by simp), superCommute_bosonic_fermionic ha (by simp)]
simp only [add_mul, mul_add]
abel
lemma superCommute_bonsonic_symm {a b : 𝓕.CrAnAlgebra} (hb : b ∈ statisticSubmodule bosonic) :
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommute hb, superCommute_bonsonic hb]
simp
lemma bonsonic_superCommute_symm {a b : 𝓕.CrAnAlgebra} (ha : a ∈ statisticSubmodule bosonic) :
[a, b]ₛca = - [b, a]ₛca := by
rw [bosonic_superCommute ha, superCommute_bonsonic ha]
simp
lemma superCommute_fermionic_fermionic {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = a * b + b * a := by
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a, a2]ₛca = a * a2 + a2 * a
change p b hb
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs, rfl, hφs⟩ := hx
let p (a2 : 𝓕.CrAnAlgebra) (hx : a2 ∈ statisticSubmodule fermionic) : Prop :=
[a2 , ofCrAnList φs]ₛca = a2 * ofCrAnList φs + ofCrAnList φs * a2
change p a ha
apply Submodule.span_induction (p := p)
· intro x hx
obtain ⟨φs', rfl, hφs'⟩ := hx
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList]
simp [hφs, hφs', ofCrAnList_append]
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact ha
· simp [p]
· intro x y hx hy hp1 hp2
simp_all [p, mul_add, add_mul]
abel
· intro c x hx hp1
simp_all [p, smul_sub]
· exact hb
lemma superCommute_fermionic_fermionic_symm {a b : 𝓕.CrAnAlgebra}
(ha : a ∈ statisticSubmodule fermionic) (hb : b ∈ statisticSubmodule fermionic) :
[a, b]ₛca = [b, a]ₛca := by
rw [superCommute_fermionic_fermionic ha hb]
rw [superCommute_fermionic_fermionic hb ha]
abel
lemma superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule bosonic
[ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic := by
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
· left
have h : bosonic = bosonic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· right
have h : fermionic = bosonic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ h1
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
· right
have h : fermionic = fermionic + bosonic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ h2
· left
have h : bosonic = fermionic + fermionic := by
simp only [add_eq_mul, instCommGroup, mul_self]
rfl
rw [h]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h1)
apply ofCrAnList_mem_statisticSubmodule_of _ _ (by simpa using h2)
lemma superCommute_bosonic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
(ha : a ∈ statisticSubmodule bosonic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1)) := by
let p (a : 𝓕.CrAnAlgebra) (ha : a ∈ statisticSubmodule bosonic) : Prop :=
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length),
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1))
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum]
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
simp_all [p]
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
simp_all [p, Finset.smul_sum]
· exact ha
lemma superCommute_fermionic_ofCrAnList_eq_sum (a : 𝓕.CrAnAlgebra) (φs : List 𝓕.CrAnStates)
(ha : a ∈ statisticSubmodule fermionic) :
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1)) := by
let p (a : 𝓕.CrAnAlgebra) (ha : a ∈ statisticSubmodule fermionic) : Prop :=
[a, ofCrAnList φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
ofCrAnList (φs.take n) * [a, ofCrAnState (φs.get n)]ₛca *
ofCrAnList (φs.drop (n + 1))
change p a ha
apply Submodule.span_induction (p := p)
· intro a ha
obtain ⟨φs, rfl, hφs⟩ := ha
simp [p]
rw [superCommute_ofCrAnList_ofCrAnList_eq_sum]
congr
funext n
simp [hφs]
· simp [p]
· intro x y hx hy hpx hpy
simp_all [p]
rw [← Finset.sum_add_distrib]
congr
funext n
simp [mul_add, add_mul]
· intro c x hx hpx
simp_all [p, Finset.smul_sum]
congr
funext x
simp [smul_smul, mul_comm]
· exact ha
lemma statistic_neq_of_superCommute_fermionic {φs φs' : List 𝓕.CrAnStates}
(h : [ofCrAnList φs, ofCrAnList φs']ₛca ∈ statisticSubmodule fermionic) :
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') [ofCrAnList φs, ofCrAnList φs']ₛca = 0 := by
by_cases h0 : [ofCrAnList φs, ofCrAnList φs']ₛca = 0
· simp [h0]
simp [h0]
by_contra hn
refine h0 (eq_zero_of_bosonic_and_fermionic ?_ h)
by_cases hc : (𝓕 |>ₛ φs) = bosonic
· have h1 : bosonic = bosonic + bosonic := by
simp
rfl
rw [h1]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _ hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn, hc]
· have h1 : bosonic = fermionic + fermionic := by
simp
rfl
rw [h1]
apply superCommute_grade
apply ofCrAnList_mem_statisticSubmodule_of _ _
simpa using hc
apply ofCrAnList_mem_statisticSubmodule_of _ _
rw [← hn]
simpa using hc
end CrAnAlgebra
end FieldSpecification