534 lines
21 KiB
Text
534 lines
21 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.SuperCommute
|
||
import Mathlib.Algebra.RingQuot
|
||
import Mathlib.RingTheory.TwoSidedIdeal.Operations
|
||
/-!
|
||
|
||
# Field operator algebra
|
||
|
||
-/
|
||
|
||
namespace FieldSpecification
|
||
open CrAnAlgebra
|
||
open HepLean.List
|
||
open FieldStatistic
|
||
|
||
variable (𝓕 : FieldSpecification)
|
||
|
||
/-- The set contains the super-commutors equal to zero in the operator algebra.
|
||
This contains e.g. the super-commutor of two creation operators. -/
|
||
def fieldOpIdealSet : Set (CrAnAlgebra 𝓕) :=
|
||
{ x |
|
||
(∃ (φ1 φ2 φ3 : 𝓕.CrAnStates),
|
||
x = [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca)
|
||
∨ (∃ (φc φc' : 𝓕.CrAnStates) (_ : 𝓕 |>ᶜ φc = .create) (_ : 𝓕 |>ᶜ φc' = .create),
|
||
x = [ofCrAnState φc, ofCrAnState φc']ₛca)
|
||
∨ (∃ (φa φa' : 𝓕.CrAnStates) (_ : 𝓕 |>ᶜ φa = .annihilate) (_ : 𝓕 |>ᶜ φa' = .annihilate),
|
||
x = [ofCrAnState φa, ofCrAnState φa']ₛca)
|
||
∨ (∃ (φ φ' : 𝓕.CrAnStates) (_ : ¬ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φ')),
|
||
x = [ofCrAnState φ, ofCrAnState φ']ₛca)}
|
||
|
||
/-- The algebra spanned by cr and an parts of fields, with appropriate super-commutors
|
||
set to zero. -/
|
||
abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient
|
||
|
||
namespace FieldOpAlgebra
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
/-- The instance of a setoid on `CrAnAlgebra` from the ideal `TwoSidedIdeal`. -/
|
||
instance : Setoid (CrAnAlgebra 𝓕) := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.toSetoid
|
||
|
||
lemma equiv_iff_sub_mem_ideal (x y : CrAnAlgebra 𝓕) :
|
||
x ≈ y ↔ x - y ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||
rw [← TwoSidedIdeal.rel_iff]
|
||
rfl
|
||
|
||
/-- The projection of `CrAnAlgebra` down to `FieldOpAlgebra` as an algebra map. -/
|
||
def ι : CrAnAlgebra 𝓕 →ₐ[ℂ] FieldOpAlgebra 𝓕 where
|
||
toFun := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.mk'
|
||
map_one' := by rfl
|
||
map_mul' x y := by rfl
|
||
map_zero' := by rfl
|
||
map_add' x y := by rfl
|
||
commutes' x := by rfl
|
||
|
||
lemma ι_surjective : Function.Surjective (@ι 𝓕) := by
|
||
intro x
|
||
obtain ⟨x⟩ := x
|
||
use x
|
||
rfl
|
||
|
||
lemma ι_apply (x : CrAnAlgebra 𝓕) : ι x = Quotient.mk _ x := rfl
|
||
|
||
lemma ι_of_mem_fieldOpIdealSet (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||
ι x = 0 := by
|
||
rw [ι_apply]
|
||
change ⟦x⟧ = ⟦0⟧
|
||
simp only [ringConGen, Quotient.eq]
|
||
refine RingConGen.Rel.of x 0 ?_
|
||
simpa using hx
|
||
|
||
lemma ι_superCommuteF_of_create_create (φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = .create)
|
||
(hφc' : 𝓕 |>ᶜ φc' = .create) : ι [ofCrAnState φc, ofCrAnState φc']ₛca = 0 := by
|
||
apply ι_of_mem_fieldOpIdealSet
|
||
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
|
||
simp only [exists_prop]
|
||
right
|
||
left
|
||
use φc, φc', hφc, hφc'
|
||
|
||
lemma ι_superCommuteF_of_annihilate_annihilate (φa φa' : 𝓕.CrAnStates)
|
||
(hφa : 𝓕 |>ᶜ φa = .annihilate) (hφa' : 𝓕 |>ᶜ φa' = .annihilate) :
|
||
ι [ofCrAnState φa, ofCrAnState φa']ₛca = 0 := by
|
||
apply ι_of_mem_fieldOpIdealSet
|
||
simp only [fieldOpIdealSet, exists_and_left, Set.mem_setOf_eq]
|
||
simp only [exists_prop]
|
||
right
|
||
right
|
||
left
|
||
use φa, φa', hφa, hφa'
|
||
|
||
lemma ι_superCommuteF_of_diff_statistic {φ ψ : 𝓕.CrAnStates}
|
||
(h : (𝓕 |>ₛ φ) ≠ (𝓕 |>ₛ ψ)) : ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by
|
||
apply ι_of_mem_fieldOpIdealSet
|
||
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
|
||
right
|
||
right
|
||
right
|
||
use φ, ψ
|
||
|
||
lemma ι_superCommuteF_zero_of_fermionic (φ ψ : 𝓕.CrAnStates)
|
||
(h : [ofCrAnState φ, ofCrAnState ψ]ₛca ∈ statisticSubmodule fermionic) :
|
||
ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by
|
||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton] at h ⊢
|
||
rcases statistic_neq_of_superCommuteF_fermionic h with h | h
|
||
· simp only [ofCrAnList_singleton]
|
||
apply ι_superCommuteF_of_diff_statistic
|
||
simpa using h
|
||
· simp [h]
|
||
|
||
lemma ι_superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_zero (φ ψ : 𝓕.CrAnStates) :
|
||
[ofCrAnState φ, ofCrAnState ψ]ₛca ∈ statisticSubmodule bosonic ∨
|
||
ι [ofCrAnState φ, ofCrAnState ψ]ₛca = 0 := by
|
||
rcases superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ] [ψ] with h | h
|
||
· simp_all [ofCrAnList_singleton]
|
||
· simp_all only [ofCrAnList_singleton]
|
||
right
|
||
exact ι_superCommuteF_zero_of_fermionic _ _ h
|
||
|
||
/-!
|
||
|
||
## Super-commutes are in the center
|
||
|
||
-/
|
||
|
||
@[simp]
|
||
lemma ι_superCommuteF_ofCrAnState_superCommuteF_ofCrAnState_ofCrAnState (φ1 φ2 φ3 : 𝓕.CrAnStates) :
|
||
ι [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca = 0 := by
|
||
apply ι_of_mem_fieldOpIdealSet
|
||
simp only [fieldOpIdealSet, exists_prop, exists_and_left, Set.mem_setOf_eq]
|
||
left
|
||
use φ1, φ2, φ3
|
||
|
||
lemma ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnState (φ1 φ2 φ3 : 𝓕.CrAnStates) :
|
||
ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, ofCrAnState φ3]ₛca = 0 := by
|
||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||
rcases superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ1] [φ2] with h | h
|
||
· rw [bonsonic_superCommuteF_symm h]
|
||
simp [ofCrAnList_singleton]
|
||
· rcases ofCrAnList_bosonic_or_fermionic [φ3] with h' | h'
|
||
· rw [superCommuteF_bonsonic_symm h']
|
||
simp [ofCrAnList_singleton]
|
||
· rw [superCommuteF_fermionic_fermionic_symm h h']
|
||
simp [ofCrAnList_singleton]
|
||
|
||
lemma ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnList (φ1 φ2 : 𝓕.CrAnStates)
|
||
(φs : List 𝓕.CrAnStates) :
|
||
ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, ofCrAnList φs]ₛca = 0 := by
|
||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||
rcases superCommuteF_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ1] [φ2] with h | h
|
||
· rw [superCommuteF_bosonic_ofCrAnList_eq_sum _ _ h]
|
||
simp [ofCrAnList_singleton, ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnState]
|
||
· rw [superCommuteF_fermionic_ofCrAnList_eq_sum _ _ h]
|
||
simp [ofCrAnList_singleton, ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnState]
|
||
|
||
@[simp]
|
||
lemma ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_crAnAlgebra (φ1 φ2 : 𝓕.CrAnStates)
|
||
(a : 𝓕.CrAnAlgebra) : ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, a]ₛca = 0 := by
|
||
change (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnState φ1, ofCrAnState φ2]ₛca) a = _
|
||
have h1 : (ι.toLinearMap ∘ₗ superCommuteF [ofCrAnState φ1, ofCrAnState φ2]ₛca) = 0 := by
|
||
apply (ofCrAnListBasis.ext fun l ↦ ?_)
|
||
simp [ι_superCommuteF_superCommuteF_ofCrAnState_ofCrAnState_ofCrAnList]
|
||
rw [h1]
|
||
simp
|
||
|
||
lemma ι_commute_crAnAlgebra_superCommuteF_ofCrAnState_ofCrAnState (φ1 φ2 : 𝓕.CrAnStates)
|
||
(a : 𝓕.CrAnAlgebra) : ι a * ι [ofCrAnState φ1, ofCrAnState φ2]ₛca -
|
||
ι [ofCrAnState φ1, ofCrAnState φ2]ₛca * ι a = 0 := by
|
||
rcases ι_superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_zero φ1 φ2 with h | h
|
||
swap
|
||
· simp [h]
|
||
trans - ι [[ofCrAnState φ1, ofCrAnState φ2]ₛca, a]ₛca
|
||
· rw [bosonic_superCommuteF h]
|
||
simp
|
||
· simp
|
||
|
||
lemma ι_superCommuteF_ofCrAnState_ofCrAnState_mem_center (φ ψ : 𝓕.CrAnStates) :
|
||
ι [ofCrAnState φ, ofCrAnState ψ]ₛca ∈ Subalgebra.center ℂ 𝓕.FieldOpAlgebra := by
|
||
rw [Subalgebra.mem_center_iff]
|
||
intro a
|
||
obtain ⟨a, rfl⟩ := ι_surjective a
|
||
have h0 := ι_commute_crAnAlgebra_superCommuteF_ofCrAnState_ofCrAnState φ ψ a
|
||
trans ι ((superCommuteF (ofCrAnState φ)) (ofCrAnState ψ)) * ι a + 0
|
||
swap
|
||
simp only [add_zero]
|
||
rw [← h0]
|
||
abel
|
||
|
||
/-!
|
||
|
||
## The kernal of ι
|
||
-/
|
||
|
||
lemma ι_eq_zero_iff_mem_ideal (x : CrAnAlgebra 𝓕) :
|
||
ι x = 0 ↔ x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||
rw [ι_apply]
|
||
change ⟦x⟧ = ⟦0⟧ ↔ _
|
||
simp only [ringConGen, Quotient.eq]
|
||
rw [TwoSidedIdeal.mem_iff]
|
||
simp only
|
||
rfl
|
||
|
||
lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||
x.bosonicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.bosonicProj = 0 := by
|
||
have hx' := hx
|
||
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
|
||
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
|
||
⟨φ, φ', hdiff, rfl⟩
|
||
· rcases superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h
|
||
· left
|
||
rw [bosonicProj_of_mem_bosonic _ h]
|
||
simpa using hx'
|
||
· right
|
||
rw [bosonicProj_of_mem_fermionic _ h]
|
||
· rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φc φc' with h | h
|
||
· left
|
||
rw [bosonicProj_of_mem_bosonic _ h]
|
||
simpa using hx'
|
||
· right
|
||
rw [bosonicProj_of_mem_fermionic _ h]
|
||
· rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φa φa' with h | h
|
||
· left
|
||
rw [bosonicProj_of_mem_bosonic _ h]
|
||
simpa using hx'
|
||
· right
|
||
rw [bosonicProj_of_mem_fermionic _ h]
|
||
· rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ φ' with h | h
|
||
· left
|
||
rw [bosonicProj_of_mem_bosonic _ h]
|
||
simpa using hx'
|
||
· right
|
||
rw [bosonicProj_of_mem_fermionic _ h]
|
||
|
||
lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||
x.fermionicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.fermionicProj = 0 := by
|
||
have hx' := hx
|
||
simp only [fieldOpIdealSet, exists_prop, Set.mem_setOf_eq] at hx
|
||
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
|
||
⟨φ, φ', hdiff, rfl⟩
|
||
· rcases superCommuteF_superCommuteF_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h
|
||
· right
|
||
rw [fermionicProj_of_mem_bosonic _ h]
|
||
· left
|
||
rw [fermionicProj_of_mem_fermionic _ h]
|
||
simpa using hx'
|
||
· rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φc φc' with h | h
|
||
· right
|
||
rw [fermionicProj_of_mem_bosonic _ h]
|
||
· left
|
||
rw [fermionicProj_of_mem_fermionic _ h]
|
||
simpa using hx'
|
||
· rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φa φa' with h | h
|
||
· right
|
||
rw [fermionicProj_of_mem_bosonic _ h]
|
||
· left
|
||
rw [fermionicProj_of_mem_fermionic _ h]
|
||
simpa using hx'
|
||
· rcases superCommuteF_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ φ' with h | h
|
||
· right
|
||
rw [fermionicProj_of_mem_bosonic _ h]
|
||
· left
|
||
rw [fermionicProj_of_mem_fermionic _ h]
|
||
simpa using hx'
|
||
|
||
lemma bosonicProj_mem_ideal (x : CrAnAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||
x.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at hx
|
||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) : Prop :=
|
||
a.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet
|
||
change p x hx
|
||
apply AddSubgroup.closure_induction
|
||
· intro x hx
|
||
simp only [p]
|
||
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
|
||
obtain ⟨d, hd, y, hy, rfl⟩ := Set.mem_mul.mp ha
|
||
rw [bosonicProj_mul, bosonicProj_mul, fermionicProj_mul]
|
||
simp only [add_mul]
|
||
rcases fermionicProj_mem_fieldOpIdealSet_or_zero y hy with hfy | hfy
|
||
<;> rcases bosonicProj_mem_fieldOpIdealSet_or_zero y hy with hby | hby
|
||
· apply TwoSidedIdeal.add_mem
|
||
apply TwoSidedIdeal.add_mem
|
||
· /- boson, boson, boson mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(bosonicProj d) * ↑(bosonicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use bosonicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (bosonicProj y).1
|
||
simp [hby]
|
||
· use ↑(bosonicProj b)
|
||
simp
|
||
· /- fermion, fermion, boson mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(fermionicProj d) * ↑(fermionicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use fermionicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (fermionicProj y).1
|
||
simp [hby, hfy]
|
||
· use ↑(bosonicProj b)
|
||
simp
|
||
apply TwoSidedIdeal.add_mem
|
||
· /- boson, fermion, fermion mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(bosonicProj d) * ↑(fermionicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use bosonicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (fermionicProj y).1
|
||
simp [hby, hfy]
|
||
· use ↑(fermionicProj b)
|
||
simp
|
||
· /- fermion, boson, fermion mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(fermionicProj d) * ↑(bosonicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use fermionicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (bosonicProj y).1
|
||
simp [hby, hfy]
|
||
· use ↑(fermionicProj b)
|
||
simp
|
||
· simp only [hby, ZeroMemClass.coe_zero, mul_zero, zero_mul, zero_add, add_zero]
|
||
apply TwoSidedIdeal.add_mem
|
||
· /- fermion, fermion, boson mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(fermionicProj d) * ↑(fermionicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use fermionicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (fermionicProj y).1
|
||
simp [hby, hfy]
|
||
· use ↑(bosonicProj b)
|
||
simp
|
||
· /- boson, fermion, fermion mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(bosonicProj d) * ↑(fermionicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use bosonicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (fermionicProj y).1
|
||
simp [hby, hfy]
|
||
· use ↑(fermionicProj b)
|
||
simp
|
||
· simp only [hfy, ZeroMemClass.coe_zero, mul_zero, zero_mul, add_zero, zero_add]
|
||
apply TwoSidedIdeal.add_mem
|
||
· /- boson, boson, boson mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(bosonicProj d) * ↑(bosonicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use bosonicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (bosonicProj y).1
|
||
simp [hby]
|
||
· use ↑(bosonicProj b)
|
||
simp
|
||
· /- fermion, boson, fermion mem-/
|
||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||
apply Set.mem_mul.mpr
|
||
use ↑(fermionicProj d) * ↑(bosonicProj y)
|
||
apply And.intro
|
||
· apply Set.mem_mul.mpr
|
||
use fermionicProj d
|
||
simp only [Set.mem_univ, mul_eq_mul_left_iff, ZeroMemClass.coe_eq_zero, true_and]
|
||
use (bosonicProj y).1
|
||
simp [hby, hfy]
|
||
· use ↑(fermionicProj b)
|
||
simp
|
||
· simp [hfy, hby]
|
||
· simp [p]
|
||
· intro x y hx hy hpx hpy
|
||
simp_all only [map_add, Submodule.coe_add, p]
|
||
apply TwoSidedIdeal.add_mem
|
||
· exact hpx
|
||
· exact hpy
|
||
· intro x hx
|
||
simp [p]
|
||
|
||
lemma fermionicProj_mem_ideal (x : CrAnAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||
x.fermionicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||
have hb := bosonicProj_mem_ideal x hx
|
||
rw [← ι_eq_zero_iff_mem_ideal] at hx hb ⊢
|
||
rw [← bosonicProj_add_fermionicProj x] at hx
|
||
simp only [map_add] at hx
|
||
simp_all
|
||
|
||
lemma ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero (x : CrAnAlgebra 𝓕) :
|
||
ι x = 0 ↔ ι x.bosonicProj.1 = 0 ∧ ι x.fermionicProj.1 = 0 := by
|
||
apply Iff.intro
|
||
· intro h
|
||
rw [ι_eq_zero_iff_mem_ideal] at h ⊢
|
||
rw [ι_eq_zero_iff_mem_ideal]
|
||
apply And.intro
|
||
· exact bosonicProj_mem_ideal x h
|
||
· exact fermionicProj_mem_ideal x h
|
||
· intro h
|
||
rw [← bosonicProj_add_fermionicProj x]
|
||
simp_all
|
||
|
||
/-!
|
||
|
||
## Constructors
|
||
|
||
-/
|
||
|
||
/-- An element of `FieldOpAlgebra` from a `States`. -/
|
||
def ofFieldOp (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofState φ)
|
||
|
||
lemma ofFieldOp_eq_ι_ofState (φ : 𝓕.States) : ofFieldOp φ = ι (ofState φ) := rfl
|
||
|
||
/-- An element of `FieldOpAlgebra` from a list of `States`. -/
|
||
def ofFieldOpList (φs : List 𝓕.States) : 𝓕.FieldOpAlgebra := ι (ofStateList φs)
|
||
|
||
lemma ofFieldOpList_eq_ι_ofStateList (φs : List 𝓕.States) :
|
||
ofFieldOpList φs = ι (ofStateList φs) := rfl
|
||
|
||
lemma ofFieldOpList_append (φs ψs : List 𝓕.States) :
|
||
ofFieldOpList (φs ++ ψs) = ofFieldOpList φs * ofFieldOpList ψs := by
|
||
simp only [ofFieldOpList]
|
||
rw [ofStateList_append]
|
||
simp
|
||
|
||
lemma ofFieldOpList_singleton (φ : 𝓕.States) :
|
||
ofFieldOpList [φ] = ofFieldOp φ := by
|
||
simp only [ofFieldOpList, ofFieldOp, ofStateList_singleton]
|
||
|
||
/-- An element of `FieldOpAlgebra` from a `CrAnStates`. -/
|
||
def ofCrAnFieldOp (φ : 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnState φ)
|
||
|
||
lemma ofCrAnFieldOp_eq_ι_ofCrAnState (φ : 𝓕.CrAnStates) :
|
||
ofCrAnFieldOp φ = ι (ofCrAnState φ) := rfl
|
||
|
||
lemma ofFieldOp_eq_sum (φ : 𝓕.States) :
|
||
ofFieldOp φ = (∑ i : 𝓕.statesToCrAnType φ, ofCrAnFieldOp ⟨φ, i⟩) := by
|
||
rw [ofFieldOp, ofState]
|
||
simp only [map_sum]
|
||
rfl
|
||
|
||
/-- An element of `FieldOpAlgebra` from a list of `CrAnStates`. -/
|
||
def ofCrAnFieldOpList (φs : List 𝓕.CrAnStates) : 𝓕.FieldOpAlgebra := ι (ofCrAnList φs)
|
||
|
||
lemma ofCrAnFieldOpList_eq_ι_ofCrAnList (φs : List 𝓕.CrAnStates) :
|
||
ofCrAnFieldOpList φs = ι (ofCrAnList φs) := rfl
|
||
|
||
lemma ofCrAnFieldOpList_append (φs ψs : List 𝓕.CrAnStates) :
|
||
ofCrAnFieldOpList (φs ++ ψs) = ofCrAnFieldOpList φs * ofCrAnFieldOpList ψs := by
|
||
simp only [ofCrAnFieldOpList]
|
||
rw [ofCrAnList_append]
|
||
simp
|
||
|
||
lemma ofCrAnFieldOpList_singleton (φ : 𝓕.CrAnStates) :
|
||
ofCrAnFieldOpList [φ] = ofCrAnFieldOp φ := by
|
||
simp only [ofCrAnFieldOpList, ofCrAnFieldOp, ofCrAnList_singleton]
|
||
|
||
lemma ofFieldOpList_eq_sum (φs : List 𝓕.States) :
|
||
ofFieldOpList φs = ∑ s : CrAnSection φs, ofCrAnFieldOpList s.1 := by
|
||
rw [ofFieldOpList, ofStateList_sum]
|
||
simp only [map_sum]
|
||
rfl
|
||
|
||
/-- The annihilation part of a state. -/
|
||
def anPart (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (anPartF φ)
|
||
|
||
lemma anPart_eq_ι_anPartF (φ : 𝓕.States) : anPart φ = ι (anPartF φ) := rfl
|
||
|
||
@[simp]
|
||
lemma anPart_negAsymp (φ : 𝓕.IncomingAsymptotic) :
|
||
anPart (States.inAsymp φ) = 0 := by
|
||
simp [anPart, anPartF]
|
||
|
||
@[simp]
|
||
lemma anPart_position (φ : 𝓕.PositionStates) :
|
||
anPart (States.position φ) =
|
||
ofCrAnFieldOp ⟨States.position φ, CreateAnnihilate.annihilate⟩ := by
|
||
simp [anPart, ofCrAnFieldOp]
|
||
|
||
@[simp]
|
||
lemma anPart_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
|
||
anPart (States.outAsymp φ) = ofCrAnFieldOp ⟨States.outAsymp φ, ()⟩ := by
|
||
simp [anPart, ofCrAnFieldOp]
|
||
|
||
/-- The creation part of a state. -/
|
||
def crPart (φ : 𝓕.States) : 𝓕.FieldOpAlgebra := ι (crPartF φ)
|
||
|
||
lemma crPart_eq_ι_crPartF (φ : 𝓕.States) : crPart φ = ι (crPartF φ) := rfl
|
||
|
||
@[simp]
|
||
lemma crPart_negAsymp (φ : 𝓕.IncomingAsymptotic) :
|
||
crPart (States.inAsymp φ) = ofCrAnFieldOp ⟨States.inAsymp φ, ()⟩ := by
|
||
simp [crPart, ofCrAnFieldOp]
|
||
|
||
@[simp]
|
||
lemma crPart_position (φ : 𝓕.PositionStates) :
|
||
crPart (States.position φ) =
|
||
ofCrAnFieldOp ⟨States.position φ, CreateAnnihilate.create⟩ := by
|
||
simp [crPart, ofCrAnFieldOp]
|
||
|
||
@[simp]
|
||
lemma crPart_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
|
||
crPart (States.outAsymp φ) = 0 := by
|
||
simp [crPart]
|
||
|
||
lemma ofFieldOp_eq_crPart_add_anPart (φ : 𝓕.States) :
|
||
ofFieldOp φ = crPart φ + anPart φ := by
|
||
rw [ofFieldOp, crPart, anPart, ofState_eq_crPartF_add_anPartF]
|
||
simp only [map_add]
|
||
|
||
end FieldOpAlgebra
|
||
end FieldSpecification
|