PhysLean/HepLean/SpaceTime/LorentzAlgebra/Basic.lean
2024-07-02 10:13:52 -04:00

109 lines
3.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Basic
import HepLean.SpaceTime.MinkowskiMetric
import Mathlib.Algebra.Lie.Classical
/-!
# The Lorentz Algebra
We define
- Define `lorentzAlgebra` via `LieAlgebra.Orthogonal.so'` as a subalgebra of
`Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) `.
- In `mem_iff` prove that a matrix is in the Lorentz algebra if and only if it satisfies the
condition `Aᵀ * η = - η * A`.
-/
namespace SpaceTime
open Matrix
open TensorProduct
/-- The Lorentz algebra as a subalgebra of `Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) `. -/
def lorentzAlgebra : LieSubalgebra (Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) :=
(LieAlgebra.Orthogonal.so' (Fin 1) (Fin 3) )
namespace lorentzAlgebra
open minkowskiMatrix
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
have h1 := A.2
erw [mem_skewAdjointMatricesLieSubalgebra] at h1
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h1
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) }
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
erw [mem_skewAdjointMatricesLieSubalgebra]
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h
lemma mem_iff {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) } :
A ∈ lorentzAlgebra ↔ Aᵀ * η = - η * A :=
Iff.intro (fun h => transpose_eta ⟨A, h⟩) (fun h => mem_of_transpose_eta_eq_eta_mul_self h)
lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ) :
A ∈ lorentzAlgebra ↔ A = - η * Aᵀ * η := by
rw [mem_iff]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· trans -η * (Aᵀ * η)
rw [h]
trans (η * η) * A
rw [minkowskiMatrix.sq]
all_goals noncomm_ring
· nth_rewrite 2 [h]
trans (η * η) * Aᵀ * η
rw [minkowskiMatrix.sq]
all_goals noncomm_ring
lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 1 ⊕ Fin 3) : Λ.1 μ μ = 0 := by
have h := congrArg (fun M ↦ M μ μ) $ mem_iff.mp Λ.2
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
transpose_apply, diagonal_neg, diagonal_mul, neg_mul] at h
rcases μ with μ | μ
simpa using h
simpa using h
lemma time_comps (Λ : lorentzAlgebra) (i : Fin 3) :
Λ.1 (Sum.inr i) (Sum.inl 0) = Λ.1 (Sum.inl 0) (Sum.inr i) := by
simpa only [Fin.isValue, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal,
transpose_apply, Sum.elim_inr, mul_neg, mul_one, diagonal_neg, diagonal_mul, Sum.elim_inl,
neg_mul, one_mul, neg_inj] using congrArg (fun M ↦ M (Sum.inl 0) (Sum.inr i)) $ mem_iff.mp Λ.2
lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) :
Λ.1 (Sum.inr i) (Sum.inr j) = - Λ.1 (Sum.inr j) (Sum.inr i) := by
simpa only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_neg, diagonal_mul,
Sum.elim_inr, neg_neg, one_mul, mul_diagonal, transpose_apply, mul_neg, mul_one] using
(congrArg (fun M ↦ M (Sum.inr i) (Sum.inr j)) $ mem_iff.mp Λ.2).symm
end lorentzAlgebra
@[simps!]
instance lorentzVectorAsLieRingModule : LieRingModule lorentzAlgebra (LorentzVector 3) where
bracket Λ x := Λ.1.mulVec x
add_lie Λ1 Λ2 x := by
simp [add_mulVec]
lie_add Λ x1 x2 := by
simp only
exact mulVec_add _ _ _
leibniz_lie Λ1 Λ2 x := by
simp [mulVec_add, Bracket.bracket, sub_mulVec]
@[simps!]
instance spaceTimeAsLieModule : LieModule lorentzAlgebra (LorentzVector 3) where
smul_lie r Λ x := by
simp [Bracket.bracket, smul_mulVec_assoc]
lie_smul r Λ x := by
simp [Bracket.bracket]
rw [mulVec_smul]
end SpaceTime