PhysLean/HepLean/SpaceTime/LorentzVector/NormOne.lean
2024-07-02 10:13:52 -04:00

301 lines
8.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Basic
import HepLean.SpaceTime.MinkowskiMetric
/-!
# Lorentz vectors with norm one
-/
open minkowskiMetric
@[simp]
def NormOneLorentzVector (d : ) : Set (LorentzVector d) :=
fun x => ⟪x, x⟫ₘ = 1
instance : TopologicalSpace (NormOneLorentzVector d) := instTopologicalSpaceSubtype
namespace NormOneLorentzVector
variable {d : }
section
variable (v w : NormOneLorentzVector d)
lemma mem_iff {x : LorentzVector d} : x ∈ NormOneLorentzVector d ↔ ⟪x, x⟫ₘ = 1 := by
rfl
/-- The negative of a `NormOneLorentzVector` as a `NormOneLorentzVector`. -/
def neg : NormOneLorentzVector d := ⟨- v, by
rw [mem_iff]
simp only [map_neg, LinearMap.neg_apply, neg_neg]
exact v.2⟩
lemma time_sq : v.1.time ^ 2 = 1 + ‖v.1.space‖ ^ 2 := by
rw [time_sq_eq_metric_add_space, v.2]
lemma abs_time_ge_one : 1 ≤ |v.1.time| := by
have h1 := leq_time_sq v.1
rw [v.2] at h1
exact (one_le_sq_iff_one_le_abs _).mp h1
lemma norm_space_le_abs_time : ‖v.1.space‖ < |v.1.time| := by
rw [(abs_norm _).symm, ← @sq_lt_sq, time_sq]
exact lt_one_add (‖(v.1).space‖ ^ 2)
lemma norm_space_leq_abs_time : ‖v.1.space‖ ≤ |v.1.time| :=
le_of_lt (norm_space_le_abs_time v)
lemma time_le_minus_one_or_ge_one : v.1.time ≤ -1 1 ≤ v.1.time :=
le_abs'.mp (abs_time_ge_one v)
lemma time_nonpos_iff : v.1.time ≤ 0 ↔ v.1.time ≤ - 1 := by
apply Iff.intro
· intro h
cases' time_le_minus_one_or_ge_one v with h1 h1
exact h1
linarith
· intro h
linarith
lemma time_nonneg_iff : 0 ≤ v.1.time ↔ 1 ≤ v.1.time := by
apply Iff.intro
· intro h
cases' time_le_minus_one_or_ge_one v with h1 h1
linarith
exact h1
· intro h
linarith
lemma time_pos_iff : 0 < v.1.time ↔ 1 ≤ v.1.time := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· exact (time_nonneg_iff v).mp (le_of_lt h)
· linarith
lemma time_abs_sub_space_norm :
0 ≤ |v.1.time| * |w.1.time| - ‖v.1.space‖ * ‖w.1.space‖ := by
apply sub_nonneg.mpr
apply mul_le_mul (norm_space_leq_abs_time v) (norm_space_leq_abs_time w) ?_ ?_
exact norm_nonneg w.1.space
exact abs_nonneg (v.1 _)
/-!
# Future pointing norm one Lorentz vectors
-/
/-- The future pointing Lorentz vectors with Norm one. -/
def FuturePointing (d : ) : Set (NormOneLorentzVector d) :=
fun x => 0 < x.1.time
instance : TopologicalSpace (FuturePointing d) := instTopologicalSpaceSubtype
namespace FuturePointing
section
variable (f f' : FuturePointing d)
lemma mem_iff : v ∈ FuturePointing d ↔ 0 < v.1.time := by
rfl
lemma mem_iff_time_nonneg : v ∈ FuturePointing d ↔ 0 ≤ v.1.time := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
exact le_of_lt ((mem_iff v).mp h)
have h1 := (mem_iff v).mp
simp at h1
rw [@time_nonneg_iff] at h
rw [mem_iff]
linarith
lemma not_mem_iff : v ∉ FuturePointing d ↔ v.1.time ≤ 0 := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
exact le_of_not_lt ((mem_iff v).mp.mt h)
have h1 := (mem_iff v).mp.mt
simp at h1
exact h1 h
lemma not_mem_iff_neg : v ∉ FuturePointing d ↔ neg v ∈ FuturePointing d := by
rw [not_mem_iff, mem_iff_time_nonneg]
simp only [Fin.isValue, neg]
change _ ↔ 0 ≤ - v.1 _
exact Iff.symm neg_nonneg
lemma time_nonneg : 0 ≤ f.1.1.time := le_of_lt f.2
lemma abs_time : |f.1.1.time| = f.1.1.time := abs_of_nonneg (time_nonneg f)
lemma time_eq_sqrt : f.1.1.time = √(1 + ‖f.1.1.space‖ ^ 2) := by
symm
rw [Real.sqrt_eq_cases]
apply Or.inl
rw [← time_sq, sq]
exact ⟨rfl, time_nonneg f⟩
/-!
# The sign of ⟪v, w.1⟫ₘ different v and w
-/
lemma metric_nonneg : 0 ≤ ⟪f, f'.1.1⟫ₘ := by
apply le_trans (time_abs_sub_space_norm f f'.1)
rw [abs_time f, abs_time f']
exact ge_sub_norm f.1.1 f'.1.1
lemma one_add_metric_non_zero : 1 + ⟪f, f'.1.1⟫ₘ ≠ 0 := by
linarith [metric_nonneg f f']
/-!
# The sign of ⟪v, w.1.spaceReflection⟫ₘ different v and w
-/
section
variable {v w : NormOneLorentzVector d}
lemma metric_reflect_mem_mem (h : v ∈ FuturePointing d) (hw : w ∈ FuturePointing d) :
0 ≤ ⟪v.1, w.1.spaceReflection⟫ₘ := by
apply le_trans (time_abs_sub_space_norm v w)
rw [abs_time ⟨v, h⟩, abs_time ⟨w, hw⟩ , sub_eq_add_neg, right_spaceReflection]
apply (add_le_add_iff_left _).mpr
rw [neg_le]
apply le_trans (neg_le_abs _ : _ ≤ |⟪(v.1).space, (w.1).space⟫_|) ?_
exact abs_real_inner_le_norm (v.1).space (w.1).space
lemma metric_reflect_not_mem_not_mem (h : v ∉ FuturePointing d) (hw : w ∉ FuturePointing d) :
0 ≤ ⟪v.1, w.1.spaceReflection⟫ₘ := by
have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) ((not_mem_iff_neg w).mp hw)
apply le_of_le_of_eq h1 ?_
simp [neg]
lemma metric_reflect_mem_not_mem (h : v ∈ FuturePointing d) (hw : w ∉ FuturePointing d) :
⟪v.1, w.1.spaceReflection⟫ₘ ≤ 0 := by
rw [show (0 : ) = - 0 from zero_eq_neg.mpr rfl, le_neg]
have h1 := metric_reflect_mem_mem h ((not_mem_iff_neg w).mp hw)
apply le_of_le_of_eq h1 ?_
simp [neg]
lemma metric_reflect_not_mem_mem (h : v ∉ FuturePointing d) (hw : w ∈ FuturePointing d) :
⟪v.1, w.1.spaceReflection⟫ₘ ≤ 0 := by
rw [show (0 : ) = - 0 by simp, le_neg]
have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) hw
apply le_of_le_of_eq h1 ?_
simp [neg]
end
end
end FuturePointing
end
namespace FuturePointing
/-!
# Topology
-/
open LorentzVector
/-- The `FuturePointing d` which has all space components zero. -/
@[simps!]
noncomputable def timeVecNormOneFuture : FuturePointing d := ⟨⟨timeVec, by
rw [NormOneLorentzVector.mem_iff, on_timeVec]⟩, by
rw [mem_iff, timeVec_time]; simp⟩
/-- A continuous path from `timeVecNormOneFuture` to any other. -/
noncomputable def pathFromTime (u : FuturePointing d) : Path timeVecNormOneFuture u where
toFun t := ⟨
⟨fun i => match i with
| Sum.inl 0 => √(1 + t ^ 2 * ‖u.1.1.space‖ ^ 2)
| Sum.inr i => t * u.1.1.space i,
by
rw [NormOneLorentzVector.mem_iff, minkowskiMetric.eq_time_minus_inner_prod]
simp only [time, space, Function.comp_apply, PiLp.inner_apply, RCLike.inner_apply, map_mul,
conj_trivial]
rw [Real.mul_self_sqrt, ← @real_inner_self_eq_norm_sq, @PiLp.inner_apply]
simp only [Function.comp_apply, RCLike.inner_apply, conj_trivial]
have h1 : ∑ x : Fin d, t.1 * u.1.1 (Sum.inr x) * (↑t.1 * u.1.1 (Sum.inr x)) =
t ^ 2 * ∑ x : Fin d, u.1.1 (Sum.inr x) * u.1.1 (Sum.inr x) := by
rw [Finset.mul_sum]
apply Finset.sum_congr rfl
intro i _
ring
rw [h1]
ring
refine Right.add_nonneg (zero_le_one' ) $ mul_nonneg (sq_nonneg _) (sq_nonneg _) ⟩,
by
simp only [space, Function.comp_apply, mem_iff_time_nonneg, time, Real.sqrt_pos]
exact Real.sqrt_nonneg _⟩
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
refine Continuous.subtype_mk ?_ _
apply (continuous_pi_iff).mpr
intro i
match i with
| Sum.inl 0 =>
continuity
| Sum.inr i =>
continuity
source' := by
ext
funext i
match i with
| Sum.inl 0 =>
simp only [Set.Icc.coe_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, space,
zero_mul, add_zero, Real.sqrt_one, Fin.isValue, timeVecNormOneFuture_coe_coe]
exact Eq.symm timeVec_time
| Sum.inr i =>
simp only [Set.Icc.coe_zero, space, Function.comp_apply, zero_mul,
timeVecNormOneFuture_coe_coe]
change _ = timeVec.space i
rw [timeVec_space]
rfl
target' := by
ext
funext i
match i with
| Sum.inl 0 =>
simp only [Set.Icc.coe_one, one_pow, space, one_mul, Fin.isValue]
exact (time_eq_sqrt u).symm
| Sum.inr i =>
simp only [Set.Icc.coe_one, one_pow, space, one_mul, Fin.isValue]
exact rfl
lemma isPathConnected : IsPathConnected (@Set.univ (FuturePointing d)) := by
use timeVecNormOneFuture
apply And.intro trivial ?_
intro y a
use pathFromTime y
exact fun _ => a
lemma metric_continuous (u : LorentzVector d) :
Continuous (fun (a : FuturePointing d) => ⟪u, a.1.1⟫ₘ) := by
simp only [minkowskiMetric.eq_time_minus_inner_prod]
refine Continuous.add ?_ ?_
· refine Continuous.comp' (continuous_mul_left _) $ Continuous.comp'
(continuous_apply (Sum.inl 0))
(Continuous.comp' continuous_subtype_val continuous_subtype_val)
· refine Continuous.comp' continuous_neg $ Continuous.inner
(Continuous.comp' (Pi.continuous_precomp Sum.inr) continuous_const)
(Continuous.comp' (Pi.continuous_precomp Sum.inr) (Continuous.comp'
continuous_subtype_val continuous_subtype_val))
end FuturePointing
end NormOneLorentzVector