443 lines
21 KiB
Text
443 lines
21 KiB
Text
/-
|
||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.PerturbationTheory.WickContraction.Join
|
||
/-!
|
||
|
||
# Sign associated with joining two Wick contractions
|
||
|
||
-/
|
||
|
||
open FieldSpecification
|
||
variable {𝓕 : FieldSpecification}
|
||
|
||
namespace WickContraction
|
||
variable {n : ℕ} (c : WickContraction n)
|
||
open HepLean.List
|
||
open FieldOpAlgebra
|
||
|
||
open FieldStatistic
|
||
|
||
lemma stat_signFinset_right {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (i j : Fin [φsΛ]ᵘᶜ.length) :
|
||
(𝓕 |>ₛ ⟨[φsΛ]ᵘᶜ.get, φsucΛ.signFinset i j⟩) =
|
||
(𝓕 |>ₛ ⟨φs.get, (φsucΛ.signFinset i j).map uncontractedListEmd⟩) := by
|
||
simp only [ofFinset]
|
||
congr 1
|
||
rw [← fin_finset_sort_map_monotone]
|
||
simp only [List.map_map, List.map_inj_left, Finset.mem_sort, List.get_eq_getElem,
|
||
Function.comp_apply, getElem_uncontractedListEmd, implies_true]
|
||
intro i j h
|
||
exact uncontractedListEmd_strictMono h
|
||
|
||
lemma signFinset_right_map_uncontractedListEmd_eq_filter {φs : List 𝓕.FieldOp}
|
||
(φsΛ : WickContraction φs.length) (φsucΛ : WickContraction [φsΛ]ᵘᶜ.length)
|
||
(i j : Fin [φsΛ]ᵘᶜ.length) : (φsucΛ.signFinset i j).map uncontractedListEmd =
|
||
((join φsΛ φsucΛ).signFinset (uncontractedListEmd i) (uncontractedListEmd j)).filter
|
||
(fun c => c ∈ φsΛ.uncontracted) := by
|
||
ext a
|
||
simp only [Finset.mem_map, Finset.mem_filter]
|
||
apply Iff.intro
|
||
· intro h
|
||
obtain ⟨a, ha, rfl⟩ := h
|
||
apply And.intro
|
||
· simp_all only [signFinset, Finset.mem_filter, Finset.mem_univ, true_and,
|
||
join_getDual?_apply_uncontractedListEmb, Option.map_eq_none', Option.isSome_map']
|
||
apply And.intro
|
||
· exact uncontractedListEmd_strictMono ha.1
|
||
· apply And.intro
|
||
· exact uncontractedListEmd_strictMono ha.2.1
|
||
· have ha2 := ha.2.2
|
||
simp_all only [and_true]
|
||
rcases ha2 with ha2 | ha2
|
||
· simp [ha2]
|
||
· right
|
||
intro h
|
||
apply lt_of_lt_of_eq (uncontractedListEmd_strictMono (ha2 h))
|
||
rw [Option.get_map]
|
||
· exact uncontractedListEmd_mem_uncontracted a
|
||
· intro h
|
||
have h2 := h.2
|
||
have h2' := uncontractedListEmd_surjective_mem_uncontracted a h.2
|
||
obtain ⟨a, rfl⟩ := h2'
|
||
use a
|
||
simp_all only [signFinset, Finset.mem_filter, Finset.mem_univ,
|
||
join_getDual?_apply_uncontractedListEmb, Option.map_eq_none', Option.isSome_map', true_and,
|
||
and_true, and_self]
|
||
apply And.intro
|
||
· have h1 := h.1
|
||
rw [StrictMono.lt_iff_lt] at h1
|
||
exact h1
|
||
exact fun _ _ h => uncontractedListEmd_strictMono h
|
||
· apply And.intro
|
||
· have h1 := h.2.1
|
||
rw [StrictMono.lt_iff_lt] at h1
|
||
exact h1
|
||
exact fun _ _ h => uncontractedListEmd_strictMono h
|
||
· have h1 := h.2.2
|
||
simp_all only [and_true]
|
||
rcases h1 with h1 | h1
|
||
· simp [h1]
|
||
· right
|
||
intro h
|
||
have h1' := h1 h
|
||
have hl : uncontractedListEmd i < uncontractedListEmd ((φsucΛ.getDual? a).get h) := by
|
||
apply lt_of_lt_of_eq h1'
|
||
simp [Option.get_map]
|
||
rw [StrictMono.lt_iff_lt] at hl
|
||
exact hl
|
||
exact fun _ _ h => uncontractedListEmd_strictMono h
|
||
|
||
lemma sign_right_eq_prod_mul_prod {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||
φsucΛ.sign = (∏ a, 𝓢(𝓕|>ₛ [φsΛ]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
|
||
((join φsΛ φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
|
||
(uncontractedListEmd (φsucΛ.sndFieldOfContract a))).filter
|
||
(fun c => ¬ c ∈ φsΛ.uncontracted)⟩)) *
|
||
(∏ a, 𝓢(𝓕|>ₛ [φsΛ]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
|
||
((join φsΛ φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
|
||
(uncontractedListEmd (φsucΛ.sndFieldOfContract a)))⟩)) := by
|
||
rw [← Finset.prod_mul_distrib, sign]
|
||
congr
|
||
funext a
|
||
rw [← map_mul]
|
||
congr
|
||
rw [stat_signFinset_right, signFinset_right_map_uncontractedListEmd_eq_filter]
|
||
rw [ofFinset_filter]
|
||
|
||
lemma join_singleton_signFinset_eq_filter {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j)
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
(join (singleton h) φsucΛ).signFinset i j =
|
||
((singleton h).signFinset i j).filter (fun c => ¬
|
||
(((join (singleton h) φsucΛ).getDual? c).isSome ∧
|
||
((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) →
|
||
(((join (singleton h) φsucΛ).getDual? c).get h1) < i))) := by
|
||
ext a
|
||
simp only [signFinset, Finset.mem_filter, Finset.mem_univ, true_and, not_and, not_forall, not_lt,
|
||
and_assoc, and_congr_right_iff]
|
||
intro h1 h2
|
||
have h1 : (singleton h).getDual? a = none := by
|
||
rw [singleton_getDual?_eq_none_iff_neq]
|
||
omega
|
||
simp only [h1, Option.isSome_none, Bool.false_eq_true, IsEmpty.forall_iff, or_self, true_and]
|
||
apply Iff.intro
|
||
· intro h1 h2
|
||
rcases h1 with h1 | h1
|
||
· simp only [h1, Option.isSome_none, Bool.false_eq_true, IsEmpty.exists_iff]
|
||
have h2' : ¬ (((singleton h).join φsucΛ).getDual? a).isSome := by
|
||
exact Option.not_isSome_iff_eq_none.mpr h1
|
||
exact h2' h2
|
||
use h2
|
||
have h1 := h1 h2
|
||
omega
|
||
· intro h2
|
||
by_cases h2' : (((singleton h).join φsucΛ).getDual? a).isSome = true
|
||
· have h2 := h2 h2'
|
||
obtain ⟨hb, h2⟩ := h2
|
||
right
|
||
intro hl
|
||
apply lt_of_le_of_ne h2
|
||
by_contra hn
|
||
have hij : ((singleton h).join φsucΛ).getDual? i = j := by
|
||
rw [@getDual?_eq_some_iff_mem]
|
||
simp [join, singleton]
|
||
simp only [hn, getDual?_getDual?_get_get, Option.some.injEq] at hij
|
||
omega
|
||
· simp only [Bool.not_eq_true, Option.not_isSome, Option.isNone_iff_eq_none] at h2'
|
||
simp [h2']
|
||
|
||
lemma join_singleton_left_signFinset_eq_filter {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j)
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
(𝓕 |>ₛ ⟨φs.get, (singleton h).signFinset i j⟩)
|
||
= (𝓕 |>ₛ ⟨φs.get, (join (singleton h) φsucΛ).signFinset i j⟩) *
|
||
(𝓕 |>ₛ ⟨φs.get, ((singleton h).signFinset i j).filter (fun c =>
|
||
(((join (singleton h) φsucΛ).getDual? c).isSome ∧
|
||
((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) →
|
||
(((join (singleton h) φsucΛ).getDual? c).get h1) < i)))⟩) := by
|
||
conv_rhs =>
|
||
left
|
||
rw [join_singleton_signFinset_eq_filter]
|
||
rw [mul_comm]
|
||
exact (ofFinset_filter_mul_neg 𝓕.fieldOpStatistic _ _ _).symm
|
||
|
||
/-- The difference in sign between `φsucΛ.sign` and the direct contribution of `φsucΛ` to
|
||
`(join (singleton h) φsucΛ)`. -/
|
||
def joinSignRightExtra {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j)
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : ℂ :=
|
||
∏ a, 𝓢(𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
|
||
((join (singleton h) φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
|
||
(uncontractedListEmd (φsucΛ.sndFieldOfContract a))).filter
|
||
(fun c => ¬ c ∈ (singleton h).uncontracted)⟩)
|
||
|
||
/-- The difference in sign between `(singleton h).sign` and the direct contribution of
|
||
`(singleton h)` to `(join (singleton h) φsucΛ)`. -/
|
||
def joinSignLeftExtra {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j)
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) : ℂ :=
|
||
𝓢(𝓕 |>ₛ φs[j], (𝓕 |>ₛ ⟨φs.get, ((singleton h).signFinset i j).filter (fun c =>
|
||
(((join (singleton h) φsucΛ).getDual? c).isSome ∧
|
||
((h1 : ((join (singleton h) φsucΛ).getDual? c).isSome) →
|
||
(((join (singleton h) φsucΛ).getDual? c).get h1) < i)))⟩))
|
||
|
||
lemma join_singleton_sign_left {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j)
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
(singleton h).sign = 𝓢(𝓕 |>ₛ φs[j],
|
||
(𝓕 |>ₛ ⟨φs.get, (join (singleton h) φsucΛ).signFinset i j⟩)) * (joinSignLeftExtra h φsucΛ) := by
|
||
rw [singleton_sign_expand]
|
||
rw [join_singleton_left_signFinset_eq_filter h φsucΛ]
|
||
rw [map_mul]
|
||
rfl
|
||
|
||
lemma join_singleton_sign_right {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j)
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
φsucΛ.sign =
|
||
(joinSignRightExtra h φsucΛ) *
|
||
(∏ a, 𝓢(𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a], 𝓕|>ₛ ⟨φs.get,
|
||
((join (singleton h) φsucΛ).signFinset (uncontractedListEmd (φsucΛ.fstFieldOfContract a))
|
||
(uncontractedListEmd (φsucΛ.sndFieldOfContract a)))⟩)) := by
|
||
rw [sign_right_eq_prod_mul_prod]
|
||
rfl
|
||
|
||
lemma joinSignRightExtra_eq_i_j_finset_eq_if {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j) (φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
joinSignRightExtra h φsucΛ = ∏ a,
|
||
𝓢((𝓕|>ₛ [singleton h]ᵘᶜ[φsucΛ.sndFieldOfContract a]),
|
||
𝓕 |>ₛ ⟨φs.get, (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j ∧
|
||
j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) ∧
|
||
uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i then {j} else ∅)
|
||
∪ (if uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i ∧
|
||
i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) then {i} else ∅)⟩) := by
|
||
rw [joinSignRightExtra]
|
||
congr
|
||
funext a
|
||
congr
|
||
rw [signFinset]
|
||
rw [Finset.filter_comm]
|
||
have h11 : (Finset.filter (fun c => c ∉ (singleton h).uncontracted) Finset.univ) = {i, j} := by
|
||
ext x
|
||
simp only [Finset.mem_filter, Finset.mem_univ, true_and, Finset.mem_insert,
|
||
Finset.mem_singleton]
|
||
rw [@mem_uncontracted_iff_not_contracted]
|
||
simp only [singleton, Finset.mem_singleton, forall_eq, Finset.mem_insert, not_or, not_and,
|
||
Decidable.not_not]
|
||
omega
|
||
rw [h11]
|
||
ext x
|
||
simp only [Finset.mem_filter, Finset.mem_insert, Finset.mem_singleton, Finset.mem_union]
|
||
have hjneqfst := singleton_uncontractedEmd_neq_right h (φsucΛ.fstFieldOfContract a)
|
||
have hjneqsnd := singleton_uncontractedEmd_neq_right h (φsucΛ.sndFieldOfContract a)
|
||
have hineqfst := singleton_uncontractedEmd_neq_left h (φsucΛ.fstFieldOfContract a)
|
||
have hineqsnd := singleton_uncontractedEmd_neq_left h (φsucΛ.sndFieldOfContract a)
|
||
by_cases hj1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j
|
||
· simp only [hj1, false_and, ↓reduceIte, Finset.not_mem_empty, false_or]
|
||
have hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
|
||
simp only [hi1, false_and, ↓reduceIte, Finset.not_mem_empty, iff_false, not_and, not_or,
|
||
not_forall, not_lt]
|
||
intro hxij h1 h2
|
||
omega
|
||
· have hj1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j := by
|
||
omega
|
||
by_cases hi1 : ¬ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
|
||
· simp only [hi1, and_false, ↓reduceIte, Finset.not_mem_empty, or_false]
|
||
have hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
|
||
simp only [hj2, false_and, and_false, ↓reduceIte, Finset.not_mem_empty, iff_false, not_and,
|
||
not_or, not_forall, not_lt]
|
||
intro hxij h1 h2
|
||
omega
|
||
· have hi1 : i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by
|
||
omega
|
||
simp only [hj1, true_and, hi1, and_true]
|
||
by_cases hi2 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i
|
||
· simp only [hi2, and_false, ↓reduceIte, Finset.not_mem_empty, or_self, iff_false, not_and,
|
||
not_or, not_forall, not_lt]
|
||
by_cases hj3 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
|
||
· omega
|
||
· have hj4 : j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
|
||
intro h
|
||
rcases h with h | h
|
||
· subst h
|
||
omega
|
||
· subst h
|
||
simp only [join_singleton_getDual?_right, reduceCtorEq, not_false_eq_true,
|
||
Option.get_some, Option.isSome_some, exists_const, true_and]
|
||
omega
|
||
· have hi2 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
|
||
simp only [hi2, and_true, ↓reduceIte, Finset.mem_singleton]
|
||
by_cases hj3 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
|
||
· simp only [hj3, ↓reduceIte, Finset.not_mem_empty, false_or]
|
||
apply Iff.intro
|
||
· intro h
|
||
omega
|
||
· intro h
|
||
subst h
|
||
simp only [true_or, join_singleton_getDual?_left, reduceCtorEq, Option.isSome_some,
|
||
Option.get_some, forall_const, false_or, true_and]
|
||
omega
|
||
· have hj3 : j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
|
||
simp only [hj3, ↓reduceIte, Finset.mem_singleton]
|
||
apply Iff.intro
|
||
· intro h
|
||
omega
|
||
· intro h
|
||
rcases h with h1 | h1
|
||
· subst h1
|
||
simp only [or_true, join_singleton_getDual?_right, reduceCtorEq, Option.isSome_some,
|
||
Option.get_some, forall_const, false_or, true_and]
|
||
omega
|
||
· subst h1
|
||
simp only [true_or, join_singleton_getDual?_left, reduceCtorEq, Option.isSome_some,
|
||
Option.get_some, forall_const, false_or, true_and]
|
||
omega
|
||
|
||
lemma joinSignLeftExtra_eq_joinSignRightExtra {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j]))
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
joinSignLeftExtra h φsucΛ = joinSignRightExtra h φsucΛ := by
|
||
/- Simplifying joinSignLeftExtra. -/
|
||
let e2 : Fin φs.length ≃ {x // (((singleton h).join φsucΛ).getDual? x).isSome} ⊕
|
||
{x // ¬ (((singleton h).join φsucΛ).getDual? x).isSome} := by
|
||
exact (Equiv.sumCompl fun a => (((singleton h).join φsucΛ).getDual? a).isSome = true).symm
|
||
rw [joinSignLeftExtra, ofFinset_eq_prod, map_prod, ← e2.symm.prod_comp]
|
||
simp only [Fin.getElem_fin, Fintype.prod_sum_type, instCommGroup]
|
||
conv_lhs =>
|
||
enter [2, 2, x]
|
||
simp only [Equiv.symm_symm, Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, e2]
|
||
rw [if_neg (by
|
||
simp only [Finset.mem_filter, mem_signFinset, not_and, not_forall, not_lt, and_imp]
|
||
intro h1 h2
|
||
have hx := x.2
|
||
simp_all)]
|
||
simp only [Finset.mem_filter, mem_signFinset, map_one, Finset.prod_const_one, mul_one]
|
||
rw [← ((singleton h).join φsucΛ).sigmaContractedEquiv.prod_comp]
|
||
erw [Finset.prod_sigma]
|
||
conv_lhs =>
|
||
enter [2, a]
|
||
rw [prod_finset_eq_mul_fst_snd]
|
||
simp [e2, sigmaContractedEquiv]
|
||
rw [prod_join, singleton_prod]
|
||
simp only [join_fstFieldOfContract_joinLiftLeft, singleton_fstFieldOfContract,
|
||
join_sndFieldOfContract_joinLift, singleton_sndFieldOfContract, lt_self_iff_false, and_false,
|
||
↓reduceIte, map_one, mul_one, join_fstFieldOfContract_joinLiftRight,
|
||
join_sndFieldOfContract_joinLiftRight, getElem_uncontractedListEmd]
|
||
rw [if_neg (by omega)]
|
||
simp only [map_one, one_mul]
|
||
/- Introducing joinSignRightExtra. -/
|
||
rw [joinSignRightExtra_eq_i_j_finset_eq_if]
|
||
congr
|
||
funext a
|
||
have hjneqsnd := singleton_uncontractedEmd_neq_right h (φsucΛ.sndFieldOfContract a)
|
||
have hl : uncontractedListEmd (φsucΛ.fstFieldOfContract a) <
|
||
uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by
|
||
apply uncontractedListEmd_strictMono
|
||
exact fstFieldOfContract_lt_sndFieldOfContract φsucΛ a
|
||
by_cases hj1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j
|
||
· have hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
|
||
simp [hj1, hi1]
|
||
· have hj1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < j := by omega
|
||
simp only [hj1, and_true, instCommGroup, Fin.getElem_fin, true_and]
|
||
by_cases hi2 : ¬ i < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
|
||
· have hi1 : ¬ i < uncontractedListEmd (φsucΛ.fstFieldOfContract a) := by omega
|
||
have hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
|
||
simp [hi2, hj2, hi1]
|
||
· have hi2 : i < uncontractedListEmd (φsucΛ.sndFieldOfContract a) := by omega
|
||
have hi2n : ¬ uncontractedListEmd (φsucΛ.sndFieldOfContract a) < i := by omega
|
||
simp only [hi2n, and_false, ↓reduceIte, map_one, hi2, true_and, one_mul, and_true]
|
||
by_cases hj2 : ¬ j < uncontractedListEmd (φsucΛ.sndFieldOfContract a)
|
||
· simp only [hj2, false_and, ↓reduceIte, Finset.empty_union]
|
||
have hj2 : uncontractedListEmd (φsucΛ.sndFieldOfContract a) < j:= by omega
|
||
simp only [hj2, true_and]
|
||
by_cases hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i
|
||
· simp [hi1]
|
||
· have hi1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
|
||
simp only [hi1, ↓reduceIte, ofFinset_singleton, List.get_eq_getElem]
|
||
erw [hs]
|
||
exact exchangeSign_symm (𝓕|>ₛφs[↑j]) (𝓕|>ₛ[singleton h]ᵘᶜ[↑(φsucΛ.sndFieldOfContract a)])
|
||
· simp only [not_lt, not_le] at hj2
|
||
simp only [hj2, true_and]
|
||
by_cases hi1 : ¬ uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i
|
||
· simp [hi1]
|
||
· have hi1 : uncontractedListEmd (φsucΛ.fstFieldOfContract a) < i := by omega
|
||
simp only [hi1, and_true, ↓reduceIte]
|
||
have hj2 : ¬ uncontractedListEmd (φsucΛ.sndFieldOfContract a) < j := by omega
|
||
simp only [hj2, ↓reduceIte, map_one]
|
||
rw [← ofFinset_union_disjoint]
|
||
simp only [instCommGroup, ofFinset_singleton, List.get_eq_getElem, hs]
|
||
erw [hs]
|
||
simp only [Fin.getElem_fin, mul_self, map_one]
|
||
simp only [Finset.disjoint_singleton_right, Finset.mem_singleton]
|
||
exact Fin.ne_of_lt h
|
||
|
||
lemma join_sign_singleton {φs : List 𝓕.FieldOp}
|
||
{i j : Fin φs.length} (h : i < j) (hs : (𝓕 |>ₛ φs[i]) = (𝓕 |>ₛ φs[j]))
|
||
(φsucΛ : WickContraction [singleton h]ᵘᶜ.length) :
|
||
(join (singleton h) φsucΛ).sign = (singleton h).sign * φsucΛ.sign := by
|
||
rw [join_singleton_sign_right, join_singleton_sign_left h φsucΛ]
|
||
rw [joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
|
||
rw [← mul_assoc, mul_assoc _ _ (joinSignRightExtra h φsucΛ)]
|
||
have h1 : (joinSignRightExtra h φsucΛ * joinSignRightExtra h φsucΛ) = 1 := by
|
||
rw [← joinSignLeftExtra_eq_joinSignRightExtra h hs φsucΛ]
|
||
simp [joinSignLeftExtra]
|
||
simp only [instCommGroup, Fin.getElem_fin, h1, mul_one]
|
||
rw [sign, prod_join]
|
||
congr
|
||
· rw [singleton_prod]
|
||
simp
|
||
· funext a
|
||
simp
|
||
|
||
lemma join_sign_induction {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) :
|
||
(n : ℕ) → (hn : φsΛ.1.card = n) →
|
||
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign
|
||
| 0, hn => by
|
||
rw [@card_zero_iff_empty] at hn
|
||
subst hn
|
||
simp only [empty_join, sign_empty, one_mul]
|
||
apply sign_congr
|
||
simp
|
||
| Nat.succ n, hn => by
|
||
obtain ⟨i, j, hij, φsucΛ', rfl, h1, h2, h3⟩ :=
|
||
exists_join_singleton_of_card_ge_zero φsΛ (by simp [hn]) hc
|
||
rw [join_assoc, join_sign_singleton hij h1, join_sign_singleton hij h1]
|
||
have hn : φsucΛ'.1.card = n := by
|
||
omega
|
||
rw [join_sign_induction φsucΛ' (congr (by simp [join_uncontractedListGet]) φsucΛ) h2
|
||
n hn]
|
||
rw [mul_assoc]
|
||
simp only [mul_eq_mul_left_iff]
|
||
left
|
||
left
|
||
apply sign_congr
|
||
exact join_uncontractedListGet (singleton hij) φsucΛ'
|
||
|
||
/-- For a list `φs` of `𝓕.FieldOp`, a grading compliant Wick contraction `φsΛ` of `φs`,
|
||
and a Wick contraction `φsucΛ` of `[φsΛ]ᵘᶜ`, the following relation holds
|
||
`(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign`.
|
||
|
||
In `φsΛ.sign` the sign is determined by starting with the contracted pair
|
||
whose first element occurs at the left-most position. This lemma manifests that
|
||
choice does not matter, and that contracted pairs can be brought together in any order. -/
|
||
lemma join_sign {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) (hc : φsΛ.GradingCompliant) :
|
||
(join φsΛ φsucΛ).sign = φsΛ.sign * φsucΛ.sign := by
|
||
exact join_sign_induction φsΛ φsucΛ hc (φsΛ).1.card rfl
|
||
|
||
lemma join_sign_timeContract {φs : List 𝓕.FieldOp} (φsΛ : WickContraction φs.length)
|
||
(φsucΛ : WickContraction [φsΛ]ᵘᶜ.length) :
|
||
(join φsΛ φsucΛ).sign • (join φsΛ φsucΛ).timeContract.1 =
|
||
(φsΛ.sign • φsΛ.timeContract.1) * (φsucΛ.sign • φsucΛ.timeContract.1) := by
|
||
rw [join_timeContract]
|
||
by_cases h : φsΛ.GradingCompliant
|
||
· rw [join_sign _ _ h]
|
||
simp [smul_smul, mul_comm]
|
||
· rw [timeContract_of_not_gradingCompliant _ _ h]
|
||
simp
|
||
|
||
end WickContraction
|