PhysLean/HepLean/PerturbationTheory/Wick/Signs/KoszulSign.lean
2024-12-19 14:25:09 +00:00

235 lines
8.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Algebra.FreeAlgebra
import Mathlib.Algebra.Lie.OfAssociative
import Mathlib.Analysis.Complex.Basic
import HepLean.PerturbationTheory.Wick.Signs.KoszulSignInsert
/-!
# Koszul sign insert
-/
namespace Wick
open HepLean.List
/-- Gives a factor of `- 1` for every fermion-fermion (`q` is `1`) crossing that occurs when sorting
a list of based on `r`. -/
def koszulSign {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) :
List I →
| [] => 1
| a :: l => koszulSignInsert r q a l * koszulSign r q l
lemma koszulSign_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
(l : List I) : koszulSign r q l * koszulSign r q l = 1 := by
induction l with
| nil => simp [koszulSign]
| cons a l ih =>
simp only [koszulSign]
trans (koszulSignInsert r q a l * koszulSignInsert r q a l) *
(koszulSign r q l * koszulSign r q l)
ring
rw [ih]
rw [koszulSignInsert_mul_self, mul_one]
@[simp]
lemma koszulSign_freeMonoid_of {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
(i : I) : koszulSign r q (FreeMonoid.of i) = 1 := by
change koszulSign r q [i] = 1
simp only [koszulSign, mul_one]
rfl
lemma koszulSignInsert_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
[DecidableRel le1] (r0 : I) :
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
koszulSignInsert le1 q r0 (r.eraseIdx n) = koszulSignInsert le1 q r0 r
| [], _, _ => by
simp
| r1 :: r, ⟨0, h⟩, hr => by
simp only [List.eraseIdx_zero, List.tail_cons]
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
List.getElem_cons_zero, Fin.isValue] at hr
rw [koszulSignInsert]
simp [hr]
| r1 :: r, ⟨n + 1, h⟩, hr => by
simp only [List.eraseIdx_cons_succ]
rw [koszulSignInsert, koszulSignInsert]
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ hr]
lemma koszulSign_erase_boson {I : Type} (q : I → Fin 2) (le1 :I → I → Prop)
[DecidableRel le1] :
(r : List I) → (n : Fin r.length) → (heq : q (r.get n) = 0) →
koszulSign le1 q (r.eraseIdx n) = koszulSign le1 q r
| [], _ => by
simp
| r0 :: r, ⟨0, h⟩ => by
simp only [List.length_cons, Fin.zero_eta, List.get_eq_getElem, Fin.val_zero,
List.getElem_cons_zero, Fin.isValue, List.eraseIdx_zero, List.tail_cons, koszulSign]
intro h
rw [koszulSignInsert_boson]
simp only [one_mul]
exact h
| r0 :: r, ⟨n + 1, h⟩ => by
simp only [List.length_cons, List.get_eq_getElem, List.getElem_cons_succ, Fin.isValue,
List.eraseIdx_cons_succ]
intro h'
rw [koszulSign, koszulSign]
rw [koszulSign_erase_boson q le1 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩]
congr 1
rw [koszulSignInsert_erase_boson q le1 r0 r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ h']
exact h'
def koszulSignCons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (r0 r1 : I) :
:=
if le1 r0 r1 then 1 else
if q r0 = 1 ∧ q r1 = 1 then -1 else 1
lemma koszulSignCons_eq_superComuteCoef {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
[DecidableRel le1] (r0 r1 : I) : koszulSignCons q le1 r0 r1 =
if le1 r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by
simp only [koszulSignCons, Fin.isValue, superCommuteCoef, grade, ite_eq_right_iff, zero_ne_one,
imp_false]
congr 1
by_cases h0 : q r0 = 1
· by_cases h1 : q r1 = 1
· simp [h0, h1]
· have h1 : q r1 = 0 := by omega
simp [h0, h1]
· have h0 : q r0 = 0 := by omega
by_cases h1 : q r1 = 1
· simp [h0, h1]
· have h1 : q r1 = 0 := by omega
simp [h0, h1]
lemma koszulSignInsert_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
[IsTotal I le1] [IsTrans I le1] (r0 r1 : I) (r : List I) :
koszulSignInsert le1 q r0 (r1 :: r) = (koszulSignCons q le1 r0 r1) *
koszulSignInsert le1 q r0 r := by
simp [koszulSignInsert, koszulSignCons]
lemma koszulSign_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(i : I) [IsTotal I le1] [IsTrans I le1] : (r : List I) → (n : ) → (hn : n ≤ r.length) →
koszulSign le1 q (List.insertIdx n i r) = insertSign q n i r
* koszulSign le1 q r
* insertSign q (insertionSortEquiv le1 (List.insertIdx n i r) ⟨n, by
rw [List.length_insertIdx _ _ hn]
omega⟩) i
(List.insertionSort le1 (List.insertIdx n i r))
| [], 0, h => by
simp [koszulSign, insertSign, superCommuteCoef, koszulSignInsert]
| [], n + 1, h => by
simp at h
| r0 :: r, 0, h => by
simp only [List.insertIdx_zero, List.insertionSort, List.length_cons, Fin.zero_eta]
rw [koszulSign]
trans koszulSign le1 q (r0 :: r) * koszulSignInsert le1 q i (r0 :: r)
ring
simp only [insertionSortEquiv, List.length_cons, Nat.succ_eq_add_one, List.insertionSort,
orderedInsertEquiv, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, HepLean.Fin.equivCons_trans,
Equiv.trans_apply, HepLean.Fin.equivCons_zero, HepLean.Fin.finExtractOne_apply_eq,
Fin.isValue, HepLean.Fin.finExtractOne_symm_inl_apply, RelIso.coe_fn_toEquiv,
Fin.castOrderIso_apply, Fin.cast_mk, Fin.eta]
conv_rhs =>
rhs
rhs
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
conv_rhs =>
rhs
rw [← insertSign_insert]
change insertSign q (↑(orderedInsertPos le1 ((List.insertionSort le1 (r0 :: r))) i)) i
(List.insertionSort le1 (r0 :: r))
rw [← koszulSignInsert_eq_insertSign q le1]
rw [insertSign_zero]
simp
| r0 :: r, n + 1, h => by
conv_lhs =>
rw [List.insertIdx_succ_cons]
rw [koszulSign]
rw [koszulSign_insertIdx]
conv_rhs =>
rhs
simp only [List.insertIdx_succ_cons]
simp only [List.insertionSort, List.length_cons, insertionSortEquiv, Nat.succ_eq_add_one,
Equiv.trans_apply, HepLean.Fin.equivCons_succ]
erw [orderedInsertEquiv_fin_succ]
simp only [Fin.eta, Fin.coe_cast]
rhs
rw [orderedInsert_eq_insertIdx_orderedInsertPos]
conv_rhs =>
lhs
rw [insertSign_succ_cons, koszulSign]
ring_nf
conv_lhs =>
lhs
rw [mul_assoc, mul_comm]
rw [mul_assoc]
conv_rhs =>
rw [mul_assoc, mul_assoc]
congr 1
let rs := (List.insertionSort le1 (List.insertIdx n i r))
have hnsL : n < (List.insertIdx n i r).length := by
rw [List.length_insertIdx _ _]
simp only [List.length_cons, add_le_add_iff_right] at h
omega
exact Nat.le_of_lt_succ h
let ni : Fin rs.length := (insertionSortEquiv le1 (List.insertIdx n i r))
⟨n, hnsL⟩
let nro : Fin (rs.length + 1) :=
⟨↑(orderedInsertPos le1 rs r0), orderedInsertPos_lt_length le1 rs r0⟩
rw [koszulSignInsert_insertIdx, koszulSignInsert_cons]
trans koszulSignInsert le1 q r0 r * (koszulSignCons q le1 r0 i *insertSign q ni i rs)
· simp only [rs, ni]
ring
trans koszulSignInsert le1 q r0 r * (superCommuteCoef q [i] [r0] *
insertSign q (nro.succAbove ni) i (List.insertIdx nro r0 rs))
swap
· simp only [rs, nro, ni]
ring
congr 1
simp only [Fin.succAbove]
have hns : rs.get ni = i := by
simp only [Fin.eta, rs]
rw [← insertionSortEquiv_get]
simp only [Function.comp_apply, Equiv.symm_apply_apply, List.get_eq_getElem, ni]
simp_all only [List.length_cons, add_le_add_iff_right, List.getElem_insertIdx_self]
have hms : (List.orderedInsert le1 r0 rs).get ⟨nro, by simp⟩ = r0 := by
simp [nro]
have hc1 : ni.castSucc < nro → ¬ le1 r0 i := by
intro hninro
rw [← hns]
exact lt_orderedInsertPos_rel le1 r0 rs ni hninro
have hc2 : ¬ ni.castSucc < nro → le1 r0 i := by
intro hninro
rw [← hns]
refine gt_orderedInsertPos_rel le1 r0 rs ?_ ni hninro
exact List.sorted_insertionSort le1 (List.insertIdx n i r)
by_cases hn : ni.castSucc < nro
· simp only [hn, ↓reduceIte, Fin.coe_castSucc]
rw [insertSign_insert_gt]
swap
· exact hn
congr 1
rw [koszulSignCons_eq_superComuteCoef]
simp only [hc1 hn, ↓reduceIte]
rw [superCommuteCoef_comm]
· simp only [hn, ↓reduceIte, Fin.val_succ]
rw [insertSign_insert_lt]
rw [← mul_assoc]
congr 1
rw [superCommuteCoef_mul_self]
rw [koszulSignCons]
simp only [hc2 hn, ↓reduceIte]
exact Nat.le_of_not_lt hn
exact Nat.le_of_lt_succ (orderedInsertPos_lt_length le1 rs r0)
· exact Nat.le_of_lt_succ h
· exact Nat.le_of_lt_succ h
end Wick