PhysLean/HepLean/Tensors/ComplexLorentz/Basis.lean
2024-10-24 12:08:35 +00:00

452 lines
20 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
/-!
## Basis vectors associated with complex Lorentz tensors
Note that this file will be much improved once:
https://github.com/leanprover-community/mathlib4/pull/11156
is merged.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
namespace complexLorentzTensor
/-- Basis vectors for complex Lorentz tensors. -/
def basisVector {n : } (c : Fin n → complexLorentzTensor.C)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
complexLorentzTensor.F.obj (OverColor.mk c) :=
PiTensorProduct.tprod (fun i => complexLorentzTensor.basis (c i) (b i))
lemma perm_basisVector_cast {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C}
(σ : OverColor.mk c ⟶ OverColor.mk c1) (i : Fin m) :
complexLorentzTensor.repDim (c ((OverColor.Hom.toEquiv σ).symm i)) =
complexLorentzTensor.repDim (c1 i) := by
have h1 := OverColor.Hom.toEquiv_symm_apply σ i
simp only [Functor.const_obj_obj, OverColor.mk_hom] at h1
rw [h1]
/-! TODO: Generalize `basis_eq_FDiscrete`. -/
lemma basis_eq_FDiscrete {n : } (c : Fin n → complexLorentzTensor.C)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) (i : Fin n)
(h : { as := c i } = { as := c1 }) :
(complexLorentzTensor.FDiscrete.map (eqToHom h)).hom
(complexLorentzTensor.basis (c i) (b i)) =
(complexLorentzTensor.basis c1 (Fin.cast (by simp_all) (b i))) := by
have h' : c i = c1 := by
simp_all only [Discrete.mk.injEq]
subst h'
rfl
lemma perm_basisVector {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
(perm σ (tensorNode (basisVector c b))).tensor =
(basisVector c1 (fun i => Fin.cast (perm_basisVector_cast σ i)
(b ((OverColor.Hom.toEquiv σ).symm i)))) := by
rw [perm_tensor]
simp only [TensorSpecies.F_def, tensorNode_tensor]
rw [basisVector, basisVector]
erw [OverColor.lift.map_tprod]
apply congrArg
funext i
simp only [OverColor.mk_hom, OverColor.lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
rw [basis_eq_FDiscrete]
lemma perm_basisVector_tree {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
(perm σ (tensorNode (basisVector c b))).tensor =
(tensorNode (basisVector c1 (fun i => Fin.cast (perm_basisVector_cast σ i)
(b ((OverColor.Hom.toEquiv σ).symm i))))).tensor := by
exact perm_basisVector _ _
/-- The scalar determining if contracting two basis vectors together gives zero or not. -/
def contrBasisVectorMul {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
(i : Fin n.succ.succ) (j : Fin n.succ)
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) : :=
(if (b i).val = (b (i.succAbove j)).val then (1 : ) else 0)
lemma contrBasisVectorMul_neg {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {b : Π k, Fin (complexLorentzTensor.repDim (c k))}
(h : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
contrBasisVectorMul i j b = 0 := by
rw [contrBasisVectorMul]
simp only [ite_eq_else, one_ne_zero, imp_false]
exact h
lemma contrBasisVectorMul_pos {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {b : Π k, Fin (complexLorentzTensor.repDim (c k))}
(h : (b i).val = (b (i.succAbove j)).val := by decide) :
contrBasisVectorMul i j b = 1 := by
rw [contrBasisVectorMul]
simp only [ite_eq_then, zero_ne_one, imp_false, Decidable.not_not]
exact h
lemma contr_basisVector {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (tensorNode (basisVector c b))).tensor = (contrBasisVectorMul i j b) •
basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k))) := by
rw [contr_tensor]
simp only [Nat.succ_eq_add_one, tensorNode_tensor]
rw [basisVector]
erw [TensorSpecies.contrMap_tprod]
congr 1
rw [basis_eq_FDiscrete]
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply]
erw [basis_contr]
rfl
lemma contr_basisVector_tree {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(contr i j h (tensorNode (basisVector c b))).tensor =
(smul (contrBasisVectorMul i j b) (tensorNode
(basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
exact contr_basisVector _
lemma contr_basisVector_tree_pos {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(hn : (b i).val = (b (i.succAbove j)).val := by decide) :
(contr i j h (tensorNode (basisVector c b))).tensor =
((tensorNode (basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
(fun k => b (i.succAbove (j.succAbove k)))))).tensor := by
rw [contr_basisVector_tree, contrBasisVectorMul]
rw [if_pos hn]
simp [smul_tensor]
lemma contr_basisVector_tree_neg {n : } {c : Fin n.succ.succ → complexLorentzTensor.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) :
(contr i j h (tensorNode (basisVector c b))).tensor =
(tensorNode 0).tensor := by
rw [contr_basisVector_tree, contrBasisVectorMul]
rw [if_neg hn]
simp only [Nat.succ_eq_add_one, smul_tensor, tensorNode_tensor, zero_smul]
/-- Equivalence of Fin types appearing in the product of two basis vectors. -/
def prodBasisVecEquiv {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C} (i : Fin n ⊕ Fin m) :
Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i =>
Fin (complexLorentzTensor.repDim (c1 i)))
i ≃ Fin (complexLorentzTensor.repDim ((Sum.elim c c1 i))) :=
match i with
| Sum.inl _ => Equiv.refl _
| Sum.inr _ => Equiv.refl _
lemma prod_basisVector {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(b1 : Π k, Fin (complexLorentzTensor.repDim (c1 k))) :
(prod (tensorNode (basisVector c b)) (tensorNode (basisVector c1 b1))).tensor =
basisVector (Sum.elim c c1 ∘ finSumFinEquiv.symm) (fun i =>
prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))) := by
rw [prod_tensor, basisVector, basisVector]
simp only [TensorSpecies.F_def, Functor.id_obj, OverColor.mk_hom,
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
tensorNode_tensor]
have h1 := OverColor.lift.μ_tmul_tprod_mk complexLorentzTensor.FDiscrete
(fun i => (complexLorentzTensor.basis (c i)) (b i))
(fun i => (complexLorentzTensor.basis (c1 i)) (b1 i))
erw [h1, OverColor.lift.map_tprod]
apply congrArg
funext i
obtain ⟨k, hk⟩ := finSumFinEquiv.surjective i
subst hk
simp only [Functor.id_obj, OverColor.mk_hom, Function.comp_apply,
OverColor.lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
erw [← (Equiv.apply_eq_iff_eq_symm_apply finSumFinEquiv).mp rfl]
match k with
| Sum.inl k => rfl
| Sum.inr k => rfl
lemma prod_basisVector_tree {n m : } {c : Fin n → complexLorentzTensor.C}
{c1 : Fin m → complexLorentzTensor.C}
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
(b1 : Π k, Fin (complexLorentzTensor.repDim (c1 k))) :
(prod (tensorNode (basisVector c b)) (tensorNode (basisVector c1 b1))).tensor =
(tensorNode (basisVector (Sum.elim c c1 ∘ finSumFinEquiv.symm) (fun i =>
prodBasisVecEquiv (finSumFinEquiv.symm i)
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))))).tensor := by
exact prod_basisVector _ _
lemma eval_basisVector {n : } {c : Fin n.succ → complexLorentzTensor.C}
{i : Fin n.succ} (j : Fin (complexLorentzTensor.repDim (c i)))
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
(eval i j (tensorNode (basisVector c b))).tensor = (if j = b i then (1 : ) else 0) •
basisVector (c ∘ Fin.succAbove i) (fun k => b (i.succAbove k)) := by
rw [eval_tensor, basisVector, basisVector]
simp only [Nat.succ_eq_add_one, Functor.id_obj, OverColor.mk_hom, tensorNode_tensor,
Function.comp_apply, one_smul, zero_smul]
erw [TensorSpecies.evalMap_tprod]
congr 1
have h1 : Fin.ofNat' ↑j (@Fin.size_pos' (complexLorentzTensor.repDim (c i)) _) = j := by
simpa [Fin.ext_iff] using Nat.mod_eq_of_lt j.prop
rw [Basis.repr_self, Finsupp.single_apply, h1]
exact ite_congr (Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a))
(congrFun rfl) (congrFun rfl)
/-!
## Useful expansions.
-/
/-- The expansion of the Lorentz covariant metric in terms of basis vectors. -/
lemma coMetric_basis_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
basisVector ![Color.down, Color.down] (fun _ => 0)
- basisVector ![Color.down, Color.down] (fun _ => 1)
- basisVector ![Color.down, Color.down] (fun _ => 2)
- basisVector ![Color.down, Color.down] (fun _ => 3) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
all_goals
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexCoBasisFin4 _
simp only [Fin.isValue, Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
lemma coMetric_basis_expand_tree : {Lorentz.coMetric | μ ν}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 0))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 1)))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 2)))) <|
(smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 3))))).tensor :=
coMetric_basis_expand
/-- The expansion of the Lorentz contrvariant metric in terms of basis vectors. -/
lemma contrMatrix_basis_expand : {Lorentz.contrMetric | μ ν}ᵀ.tensor =
basisVector ![Color.up, Color.up] (fun _ => 0)
- basisVector ![Color.up, Color.up] (fun _ => 1)
- basisVector ![Color.up, Color.up] (fun _ => 2)
- basisVector ![Color.up, Color.up] (fun _ => 3) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V]
erw [Lorentz.contrMetric_apply_one, Lorentz.contrMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
all_goals
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexContrBasisFin4 _
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
lemma contrMatrix_basis_expand_tree : {Lorentz.contrMetric | μ ν}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 0))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 1)))) <|
TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 2)))) <|
(smul (-1) (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 3))))).tensor :=
contrMatrix_basis_expand
lemma leftMetric_expand : {Fermion.leftMetric | α β}ᵀ.tensor =
- basisVector ![Color.upL, Color.upL] (fun | 0 => 0 | 1 => 1)
+ basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.leftMetric_apply_one, Fermion.leftMetricVal_expand_tmul]
simp only [Fin.isValue, map_add, map_neg]
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
lemma leftMetric_expand_tree : {Fermion.leftMetric | α β}ᵀ.tensor =
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upL, Color.upL]
(fun | 0 => 0 | 1 => 1)))) <|
(tensorNode (basisVector ![Color.upL, Color.upL] (fun | 0 => 1 | 1 => 0)))).tensor :=
leftMetric_expand
lemma altLeftMetric_expand : {Fermion.altLeftMetric | α β}ᵀ.tensor =
basisVector ![Color.downL, Color.downL] (fun | 0 => 0 | 1 => 1)
- basisVector ![Color.downL, Color.downL] (fun | 0 => 1 | 1 => 0) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.altLeftMetric_apply_one, Fermion.altLeftMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
lemma altLeftMetric_expand_tree : {Fermion.altLeftMetric | α β}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector ![Color.downL, Color.downL]
(fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downL, Color.downL]
(fun | 0 => 1 | 1 => 0))))).tensor :=
altLeftMetric_expand
lemma rightMetric_expand : {Fermion.rightMetric | α β}ᵀ.tensor =
- basisVector ![Color.upR, Color.upR] (fun | 0 => 0 | 1 => 1)
+ basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.rightMetric_apply_one, Fermion.rightMetricVal_expand_tmul]
simp only [Fin.isValue, map_add, map_neg]
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
lemma rightMetric_expand_tree : {Fermion.rightMetric | α β}ᵀ.tensor =
(TensorTree.add (smul (-1) (tensorNode (basisVector ![Color.upR, Color.upR]
(fun | 0 => 0 | 1 => 1)))) <|
(tensorNode (basisVector ![Color.upR, Color.upR] (fun | 0 => 1 | 1 => 0)))).tensor :=
rightMetric_expand
lemma altRightMetric_expand : {Fermion.altRightMetric | α β}ᵀ.tensor =
basisVector ![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1)
- basisVector ![Color.downR, Color.downR] (fun | 0 => 1 | 1 => 0) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [Fermion.altRightMetric_apply_one, Fermion.altRightMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
· rfl
· rfl
lemma altRightMetric_expand_tree : {Fermion.altRightMetric | α β}ᵀ.tensor =
(TensorTree.add (tensorNode (basisVector
![Color.downR, Color.downR] (fun | 0 => 0 | 1 => 1))) <|
(smul (-1) (tensorNode (basisVector ![Color.downR, Color.downR]
(fun | 0 => 1 | 1 => 0))))).tensor :=
altRightMetric_expand
/-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/
lemma pauliMatrix_basis_expand : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0)
- I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)
+ I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)
+ basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0)
- basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constThreeNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue]
erw [PauliMatrix.asConsTensor_apply_one, PauliMatrix.asTensor_expand]
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V,
Fin.isValue, map_sub, map_add, _root_.map_smul]
congr 1
congr 1
congr 1
congr 1
congr 1
congr 1
congr 1
all_goals
erw [tripleIsoSep_tmul, basisVector]
apply congrArg
try apply congrArg
funext i
match i with
| (0 : Fin 3) =>
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexContrBasisFin4 _
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
| (1 : Fin 3) => rfl
| (2 : Fin 3) => rfl
lemma pauliMatrix_basis_expand_tree : {PauliMatrix.asConsTensor | μ α β}ᵀ.tensor =
(TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <|
TensorTree.add (smul (-I) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <|
TensorTree.add (smul I (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <|
TensorTree.add (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <|
(smul (-1) (tensorNode
(basisVector ![Color.up, Color.upL, Color.upR]
(fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by
rw [pauliMatrix_basis_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor,
smul_tensor, neg_smul, one_smul]
rfl
end complexLorentzTensor
end Fermion
end