PhysLean/HepLean/PerturbationTheory/Wick/StaticTheorem.lean
2024-12-19 15:40:04 +00:00

109 lines
3.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.Contraction
/-!
# Static Wick's theorem
-/
namespace Wick
noncomputable section
open HepLean.List
lemma static_wick_nil {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A)
(S : Contractions.Splitting f le1) :
F (ofListLift f [] 1) = ∑ c : Contractions [],
c.toCenterTerm f q le1 F S *
F (koszulOrder le1 (fun i => q i.fst) (ofListLift f c.normalize 1)) := by
rw [← Contractions.nilEquiv.symm.sum_comp]
simp only [Finset.univ_unique, PUnit.default_eq_unit, Contractions.nilEquiv, Equiv.coe_fn_symm_mk,
Finset.sum_const, Finset.card_singleton, one_smul]
dsimp [Contractions.normalize, Contractions.toCenterTerm]
simp [ofListLift_empty]
lemma static_wick_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
[IsTrans ((i : I) × f i) le1] [IsTotal ((i : I) × f i) le1]
{A : Type} [Semiring A] [Algebra A] (r : List I) (a : I)
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
(S : Contractions.Splitting f le1)
(ih : F (ofListLift f r 1) =
∑ c : Contractions r, c.toCenterTerm f q le1 F S * F (koszulOrder le1 (fun i => q i.fst)
(ofListLift f c.normalize 1))) :
F (ofListLift f (a :: r) 1) = ∑ c : Contractions (a :: r),
c.toCenterTerm f q le1 F S *
F (koszulOrder le1 (fun i => q i.fst) (ofListLift f c.normalize 1)) := by
rw [ofListLift_cons_eq_ofListLift, map_mul, ih, Finset.mul_sum,
← Contractions.consEquiv.symm.sum_comp]
erw [Finset.sum_sigma]
congr
funext c
have hb := S.h𝓑 a
rw [← mul_assoc]
have hi := c.toCenterTerm_center f q le1 F S
rw [Subalgebra.mem_center_iff] at hi
rw [hi, mul_assoc, ← map_mul, hb, add_mul, map_add]
conv_lhs =>
rhs
lhs
rw [ofList_eq_smul_one]
rw [Algebra.smul_mul_assoc]
rw [ofList_singleton]
rw [mul_koszulOrder_le]
conv_lhs =>
rhs
lhs
rw [← map_smul, ← Algebra.smul_mul_assoc]
rw [← ofList_singleton, ← ofList_eq_smul_one]
conv_lhs =>
rhs
rhs
rw [ofList_eq_smul_one, Algebra.smul_mul_assoc, map_smul]
rw [le_all_mul_koszulOrder_ofListLift_expand]
conv_lhs =>
rhs
rhs
rw [smul_add, Finset.smul_sum]
rw [← map_smul, ← map_smul, ← Algebra.smul_mul_assoc, ← ofList_eq_smul_one]
rhs
rhs
intro n
rw [← Algebra.smul_mul_assoc, smul_comm, ← map_smul, ← LinearMap.map_smul₂,
← ofList_eq_smul_one]
rw [← add_assoc, ← map_add, ← map_add, ← add_mul, ← hb, ← ofListLift_cons_eq_ofListLift, mul_add]
rw [Fintype.sum_option]
congr 1
rw [Finset.mul_sum]
congr
funext n
rw [← mul_assoc]
rfl
exact S.h𝓑p a
exact S.h𝓑n a
theorem static_wick_theorem {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] [IsTrans ((i : I) × f i) le1]
[IsTotal ((i : I) × f i) le1]
{A : Type} [Semiring A] [Algebra A] (r : List I)
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F]
(S : Contractions.Splitting f le1) :
F (ofListLift f r 1) = ∑ c : Contractions r, c.toCenterTerm f q le1 F S *
F (koszulOrder le1 (fun i => q i.fst) (ofListLift f c.normalize 1)) := by
induction r with
| nil => exact static_wick_nil q le1 F S
| cons a r ih => exact static_wick_cons q le1 r a F S ih
end
end Wick