PhysLean/HepLean/SpaceTime/LorentzTensor/IndexNotation/TensorIndex.lean
2024-08-06 08:10:47 -04:00

203 lines
6.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.IndexListColor
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.RisingLowering
import HepLean.SpaceTime.LorentzTensor.Contraction
/-!
# The structure of a tensor with a string of indices
-/
namespace TensorStructure
noncomputable section
open TensorColor
open IndexNotation
variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R)
variable {d : } {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν η : 𝓣.Color}
variable [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
/-- The structure an tensor with a index specification e.g. `ᵘ¹ᵤ₂`. -/
structure TensorIndex where
/-- The list of indices. -/
index : IndexListColor 𝓣.toTensorColor
/-- The underlying tensor. -/
tensor : 𝓣.Tensor index.1.colorMap
namespace TensorIndex
open TensorColor IndexListColor
variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color]
variable {n m : } {cn : Fin n → 𝓣.Color} {cm : Fin m → 𝓣.Color}
lemma index_eq_colorMap_eq {T₁ T₂ : 𝓣.TensorIndex} (hi : T₁.index = T₂.index) :
(T₂.index).1.colorMap = (T₁.index).1.colorMap ∘ (Fin.castOrderIso (by rw [hi])).toEquiv := by
funext i
congr 1
rw [hi]
simp only [RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply]
exact
(Fin.heq_ext_iff (congrArg IndexList.numIndices (congrArg Subtype.val (id (Eq.symm hi))))).mpr
rfl
lemma ext (T₁ T₂ : 𝓣.TensorIndex) (hi : T₁.index = T₂.index)
(h : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [hi])).toEquiv
(index_eq_colorMap_eq hi) T₂.tensor) : T₁ = T₂ := by
cases T₁; cases T₂
simp at hi
subst hi
simp_all
/-- The construction of a `TensorIndex` from a tensor, a IndexListColor, and a condition
on the dual maps. -/
def mkDualMap (T : 𝓣.Tensor cn) (l : IndexListColor 𝓣.toTensorColor) (hn : n = l.1.length)
(hd : DualMap l.1.colorMap (cn ∘ Fin.cast hn.symm)) :
𝓣.TensorIndex where
index := l
tensor :=
𝓣.mapIso (Equiv.refl _) (DualMap.split_dual' (by simp [hd])) <|
𝓣.dualize (DualMap.split l.1.colorMap (cn ∘ Fin.cast hn.symm)) <|
(𝓣.mapIso (Fin.castOrderIso hn).toEquiv rfl T : 𝓣.Tensor (cn ∘ Fin.cast hn.symm))
/-!
## The contraction of indices
-/
/-- The contraction of indices in a `TensorIndex`. -/
def contr (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where
index := T.index.contr
tensor :=
𝓣.mapIso (Fin.castOrderIso T.index.contr_numIndices.symm).toEquiv
T.index.contr_colorMap <|
𝓣.contr (T.index.splitContr).symm T.index.splitContr_map T.tensor
/-! TODO: Show that contracting twice is the same as contracting once. -/
/-!
## Product of `TensorIndex` allowed
-/
/-- The tensor product of two `TensorIndex`. -/
def prod (T₁ T₂ : 𝓣.TensorIndex)
(h : IndexListColorProp 𝓣.toTensorColor (T₁.index.1 ++ T₂.index.1)) : 𝓣.TensorIndex where
index := T₁.index.prod T₂.index h
tensor :=
𝓣.mapIso ((Fin.castOrderIso (IndexListColor.prod_numIndices)).toEquiv.trans
(finSumFinEquiv.symm)).symm
(IndexListColor.prod_colorMap h) <|
𝓣.tensoratorEquiv _ _ (T₁.tensor ⊗ₜ[R] T₂.tensor)
@[simp]
lemma prod_index (T₁ T₂ : 𝓣.TensorIndex)
(h : IndexListColorProp 𝓣.toTensorColor (T₁.index.1 ++ T₂.index.1)) :
(prod T₁ T₂ h).index = T₁.index.prod T₂.index h := rfl
/-!
## Scalar multiplication of
-/
/-- The scalar multiplication of a `TensorIndex` by an element of `R`. -/
def smul (r : R) (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where
index := T.index
tensor := r • T.tensor
/-!
## Addition of allowed `TensorIndex`
-/
/-- The addition of two `TensorIndex` given the condition that, after contraction,
their index lists are the same. -/
def add (T₁ T₂ : 𝓣.TensorIndex) (h : IndexListColor.PermContr T₁.index T₂.index) :
𝓣.TensorIndex where
index := T₁.index.contr
tensor :=
let T1 := T₁.contr.tensor
let T2 :𝓣.Tensor (T₁.contr.index).1.colorMap :=
𝓣.mapIso h.toEquiv.symm h.toEquiv_colorMap T₂.contr.tensor
T1 + T2
/-!
## Equivalence relation on `TensorIndex`
-/
/-- An (equivalence) relation on two `TensorIndex`.
The point in this equivalence relation is that certain things (like the
permutation of indices, the contraction of indices, or rising or lowering indices) can be placed
in the indices or moved to the tensor itself. These two descriptions are equivalent. -/
def Rel (T₁ T₂ : 𝓣.TensorIndex) : Prop :=
T₁.index.PermContr T₂.index ∧ ∀ (h : T₁.index.PermContr T₂.index),
T₁.contr.tensor = 𝓣.mapIso h.toEquiv.symm h.toEquiv_colorMap T₂.contr.tensor
namespace Rel
/-- Rel is reflexive. -/
lemma refl (T : 𝓣.TensorIndex) : Rel T T := by
apply And.intro
exact IndexListColor.PermContr.refl T.index
intro h
simp [PermContr.toEquiv_refl']
/-- Rel is symmetric. -/
lemma symm {T₁ T₂ : 𝓣.TensorIndex} (h : Rel T₁ T₂) : Rel T₂ T₁ := by
apply And.intro h.1.symm
intro h'
rw [← mapIso_symm]
symm
erw [LinearEquiv.symm_apply_eq]
rw [h.2]
apply congrFun
congr
exact h'.symm
/-- Rel is transitive. -/
lemma trans {T₁ T₂ T₃ : 𝓣.TensorIndex} (h1 : Rel T₁ T₂) (h2 : Rel T₂ T₃) : Rel T₁ T₃ := by
apply And.intro (h1.1.trans h2.1)
intro h
change _ = (𝓣.mapIso (h1.1.trans h2.1).toEquiv.symm _) T₃.contr.tensor
trans (𝓣.mapIso ((h1.1).toEquiv.trans (h2.1).toEquiv).symm (by
rw [← PermContr.toEquiv_trans]
exact proof_2 T₁ T₃ h)) T₃.contr.tensor
swap
congr
rw [← PermContr.toEquiv_trans]
erw [← mapIso_trans]
simp only [LinearEquiv.trans_apply]
apply (h1.2 h1.1).trans
apply congrArg
exact h2.2 h2.1
/-- Rel forms an equivalence relation. -/
lemma equivalence : Equivalence (@Rel _ _ 𝓣 _) where
refl := Rel.refl
symm := Rel.symm
trans := Rel.trans
/-- The equality of tensors corresponding to related tensor indices. -/
lemma to_eq {T₁ T₂ : 𝓣.TensorIndex} (h : Rel T₁ T₂) :
T₁.contr.tensor = 𝓣.mapIso h.1.toEquiv.symm h.1.toEquiv_colorMap T₂.contr.tensor := h.2 h.1
end Rel
end TensorIndex
end
end TensorStructure