171 lines
6.4 KiB
Text
171 lines
6.4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.AnomalyCancellation.PureU1.Basic
|
||
import HepLean.AnomalyCancellation.PureU1.Permutations
|
||
import HepLean.AnomalyCancellation.PureU1.VectorLike
|
||
import HepLean.AnomalyCancellation.PureU1.ConstAbs
|
||
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
|
||
import HepLean.AnomalyCancellation.PureU1.Odd.LineInCubic
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.RepresentationTheory.Basic
|
||
/-!
|
||
# Parameterization in odd case
|
||
|
||
Given maps `g : Fin n → ℚ`, `f : Fin n → ℚ` and `a : ℚ` we form a solution to the anomaly
|
||
equations. We show that every solution can be got in this way, up to permutation, unless it is zero.
|
||
|
||
The main reference is:
|
||
|
||
- https://arxiv.org/pdf/1912.04804.pdf
|
||
|
||
-/
|
||
namespace PureU1
|
||
namespace Odd
|
||
open BigOperators
|
||
|
||
variable {n : ℕ}
|
||
open VectorLikeOddPlane
|
||
|
||
/-- Given a `g f : Fin n → ℚ` and a `a : ℚ` we form a linear solution. We will later
|
||
show that this can be extended to a complete solution. -/
|
||
def parameterizationAsLinear (g f : Fin n → ℚ) (a : ℚ) :
|
||
(PureU1 (2 * n + 1)).LinSols :=
|
||
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P' g +
|
||
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P!' f)
|
||
|
||
lemma parameterizationAsLinear_val (g f : Fin n → ℚ) (a : ℚ) :
|
||
(parameterizationAsLinear g f a).val =
|
||
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P g +
|
||
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P! f) := by
|
||
rw [parameterizationAsLinear]
|
||
change a • (_ • (P' g).val + _ • (P!' f).val) = _
|
||
rw [P'_val, P!'_val]
|
||
|
||
lemma parameterizationCharge_cube (g f : Fin n → ℚ) (a : ℚ):
|
||
(accCube (2 * n + 1)) (parameterizationAsLinear g f a).val = 0 := by
|
||
change accCubeTriLinSymm.toCubic _ = 0
|
||
rw [parameterizationAsLinear_val]
|
||
rw [HomogeneousCubic.map_smul]
|
||
rw [TriLinearSymm.toCubic_add]
|
||
rw [HomogeneousCubic.map_smul, HomogeneousCubic.map_smul]
|
||
erw [P_accCube g, P!_accCube f]
|
||
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
||
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
||
accCubeTriLinSymm.map_smul₃]
|
||
ring
|
||
|
||
/-- Given a `g f : Fin n → ℚ` and a `a : ℚ` we form a solution. -/
|
||
def parameterization (g f : Fin n → ℚ) (a : ℚ) :
|
||
(PureU1 (2 * n + 1)).Sols :=
|
||
⟨⟨parameterizationAsLinear g f a, by intro i; simp at i; exact Fin.elim0 i⟩,
|
||
parameterizationCharge_cube g f a⟩
|
||
|
||
lemma anomalyFree_param {S : (PureU1 (2 * n + 1)).Sols}
|
||
(g f : Fin n → ℚ) (hS : S.val = P g + P! f) :
|
||
accCubeTriLinSymm (P g) (P g) (P! f) =
|
||
- accCubeTriLinSymm (P! f) (P! f) (P g) := by
|
||
have hC := S.cubicSol
|
||
rw [hS] at hC
|
||
change (accCube (2 * n + 1)) (P g + P! f) = 0 at hC
|
||
erw [TriLinearSymm.toCubic_add] at hC
|
||
erw [P_accCube] at hC
|
||
erw [P!_accCube] at hC
|
||
linear_combination hC / 3
|
||
|
||
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
|
||
In this case our parameterization above will be able to recover this point. -/
|
||
def GenericCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
|
||
∀ (g f : Fin n.succ → ℚ) (_ : S.val = P g + P! f) ,
|
||
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
|
||
|
||
lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
|
||
(hs : ∃ (g f : Fin n.succ → ℚ), S.val = P g + P! f ∧
|
||
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0) : GenericCase S := by
|
||
intro g f hS hC
|
||
obtain ⟨g', f', hS', hC'⟩ := hs
|
||
rw [hS] at hS'
|
||
erw [Pa_eq] at hS'
|
||
rw [hS'.1, hS'.2] at hC
|
||
exact hC' hC
|
||
|
||
/-- A proposition on a solution which is true if `accCubeTriLinSymm (P g, P g, P! f) ≠ 0`.
|
||
In this case we will show that S is zero if it is true for all permutations. -/
|
||
def SpecialCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
|
||
∀ (g f : Fin n.succ → ℚ) (_ : S.val = P g + P! f) ,
|
||
accCubeTriLinSymm (P g) (P g) (P! f) = 0
|
||
|
||
lemma specialCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
|
||
(hs : ∃ (g f : Fin n.succ → ℚ), S.val = P g + P! f ∧
|
||
accCubeTriLinSymm (P g) (P g) (P! f) = 0) : SpecialCase S := by
|
||
intro g f hS
|
||
obtain ⟨g', f', hS', hC'⟩ := hs
|
||
rw [hS] at hS'
|
||
erw [Pa_eq] at hS'
|
||
rw [hS'.1, hS'.2]
|
||
exact hC'
|
||
|
||
lemma generic_or_special (S : (PureU1 (2 * n.succ + 1)).Sols) :
|
||
GenericCase S ∨ SpecialCase S := by
|
||
obtain ⟨g, f, h⟩ := span_basis S.1.1
|
||
have h1 : accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0 ∨
|
||
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
|
||
exact ne_or_eq _ _
|
||
cases h1 <;> rename_i h1
|
||
exact Or.inl (genericCase_exists S ⟨g, f, h, h1⟩)
|
||
exact Or.inr (specialCase_exists S ⟨g, f, h, h1⟩)
|
||
|
||
theorem generic_case {S : (PureU1 (2 * n.succ + 1)).Sols} (h : GenericCase S) :
|
||
∃ g f a, S = parameterization g f a := by
|
||
obtain ⟨g, f, hS⟩ := span_basis S.1.1
|
||
use g, f, (accCubeTriLinSymm (P! f) (P! f) (P g))⁻¹
|
||
rw [parameterization]
|
||
apply ACCSystem.Sols.ext
|
||
rw [parameterizationAsLinear_val]
|
||
change S.val = _ • ( _ • P g + _• P! f)
|
||
rw [anomalyFree_param _ _ hS]
|
||
rw [neg_neg, ← smul_add, smul_smul, inv_mul_cancel, one_smul]
|
||
exact hS
|
||
have h := h g f hS
|
||
rw [anomalyFree_param _ _ hS] at h
|
||
simp at h
|
||
exact h
|
||
|
||
|
||
lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ + 1)).Sols}
|
||
(h : SpecialCase S) :
|
||
LineInCubic S.1.1 := by
|
||
intro g f hS a b
|
||
erw [TriLinearSymm.toCubic_add]
|
||
rw [HomogeneousCubic.map_smul, HomogeneousCubic.map_smul]
|
||
erw [P_accCube]
|
||
erw [P!_accCube]
|
||
have h := h g f hS
|
||
rw [accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
||
accCubeTriLinSymm.map_smul₃, accCubeTriLinSymm.map_smul₁, accCubeTriLinSymm.map_smul₂,
|
||
accCubeTriLinSymm.map_smul₃]
|
||
rw [h]
|
||
rw [anomalyFree_param _ _ hS] at h
|
||
simp at h
|
||
change accCubeTriLinSymm (P! f) (P! f) (P g) = 0 at h
|
||
erw [h]
|
||
simp
|
||
|
||
lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ + 1)).Sols}
|
||
(h : ∀ (M : (FamilyPermutations (2 * n.succ + 1)).group),
|
||
SpecialCase ((FamilyPermutations (2 * n.succ + 1)).solAction.toFun S M)) :
|
||
LineInCubicPerm S.1.1 := by
|
||
intro M
|
||
have hM := special_case_lineInCubic (h M)
|
||
exact hM
|
||
|
||
theorem special_case {S : (PureU1 (2 * n.succ.succ + 1)).Sols}
|
||
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ + 1)).group),
|
||
SpecialCase ((FamilyPermutations (2 * n.succ.succ + 1)).solAction.toFun S M)) :
|
||
S.1.1 = 0 := by
|
||
have ht := special_case_lineInCubic_perm h
|
||
exact lineInCubicPerm_zero ht
|
||
end Odd
|
||
end PureU1
|