323 lines
9.4 KiB
Text
323 lines
9.4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Tactic.FinCases
|
||
import Mathlib.Algebra.Module.Basic
|
||
import Mathlib.Tactic.Ring
|
||
import Mathlib.Algebra.GroupWithZero.Units.Lemmas
|
||
import HepLean.AnomalyCancellation.Basic
|
||
import Mathlib.Algebra.BigOperators.Fin
|
||
import Mathlib.Logic.Equiv.Fin
|
||
/-!
|
||
# Anomaly cancellation conditions for n family SM.
|
||
|
||
We define the ACC system for the Standard Model with`n`-families and no RHN.
|
||
|
||
-/
|
||
|
||
universe v u
|
||
open Nat
|
||
open BigOperators
|
||
|
||
/-- Associate to each (including RHN) SM fermion a set of charges-/
|
||
@[simps!]
|
||
def SMCharges (n : ℕ) : ACCSystemCharges := ACCSystemChargesMk (5 * n)
|
||
|
||
/-- The vector space associated with a single species of fermions. -/
|
||
@[simps!]
|
||
def SMSpecies (n : ℕ) : ACCSystemCharges := ACCSystemChargesMk n
|
||
|
||
namespace SMCharges
|
||
|
||
variable {n : ℕ}
|
||
|
||
/-- An equivalence between the set `(SMCharges n).charges` and the set
|
||
`(Fin 5 → Fin n → ℚ)`. -/
|
||
@[simps!]
|
||
def toSpeciesEquiv : (SMCharges n).Charges ≃ (Fin 5 → Fin n → ℚ) :=
|
||
((Equiv.curry _ _ _).symm.trans ((@finProdFinEquiv 5 n).arrowCongr (Equiv.refl ℚ))).symm
|
||
|
||
/-- For a given `i ∈ Fin 5`, the projection of a charge onto that species. -/
|
||
@[simps!]
|
||
def toSpecies (i : Fin 5) : (SMCharges n).Charges →ₗ[ℚ] (SMSpecies n).Charges where
|
||
toFun S := toSpeciesEquiv S i
|
||
map_add' _ _ := by rfl
|
||
map_smul' _ _ := by rfl
|
||
|
||
lemma charges_eq_toSpecies_eq (S T : (SMCharges n).Charges) :
|
||
S = T ↔ ∀ i, toSpecies i S = toSpecies i T := by
|
||
apply Iff.intro
|
||
exact fun a i => congrArg (⇑(toSpecies i)) a
|
||
intro h
|
||
apply toSpeciesEquiv.injective
|
||
exact (Set.eqOn_univ (toSpeciesEquiv S) (toSpeciesEquiv T)).mp fun ⦃x⦄ _ => h x
|
||
|
||
lemma toSMSpecies_toSpecies_inv (i : Fin 5) (f : (Fin 5 → Fin n → ℚ) ) :
|
||
(toSpecies i) (toSpeciesEquiv.symm f) = f i := by
|
||
change (toSpeciesEquiv ∘ toSpeciesEquiv.symm ) _ i= f i
|
||
simp
|
||
|
||
/-- The `Q` charges as a map `Fin n → ℚ`. -/
|
||
abbrev Q := @toSpecies n 0
|
||
|
||
/-- The `U` charges as a map `Fin n → ℚ`. -/
|
||
abbrev U := @toSpecies n 1
|
||
|
||
/-- The `D` charges as a map `Fin n → ℚ`. -/
|
||
abbrev D := @toSpecies n 2
|
||
|
||
/-- The `L` charges as a map `Fin n → ℚ`. -/
|
||
abbrev L := @toSpecies n 3
|
||
|
||
/-- The `E` charges as a map `Fin n → ℚ`. -/
|
||
abbrev E := @toSpecies n 4
|
||
|
||
end SMCharges
|
||
|
||
namespace SMACCs
|
||
|
||
open SMCharges
|
||
|
||
variable {n : ℕ}
|
||
|
||
/-- The gravitational anomaly equation. -/
|
||
@[simp]
|
||
def accGrav : (SMCharges n).Charges →ₗ[ℚ] ℚ where
|
||
toFun S := ∑ i, (6 * Q S i + 3 * U S i + 3 * D S i + 2 * L S i + E S i)
|
||
map_add' S T := by
|
||
simp only
|
||
repeat rw [map_add]
|
||
simp [Pi.add_apply, mul_add]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
ring
|
||
map_smul' a S := by
|
||
simp only
|
||
repeat erw [map_smul]
|
||
simp [HSMul.hSMul, SMul.smul]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
--rw [show Rat.cast a = a from rfl]
|
||
ring
|
||
|
||
/-- Extensionality lemma for `accGrav`. -/
|
||
lemma accGrav_ext {S T : (SMCharges n).Charges}
|
||
(hj : ∀ (j : Fin 5), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
||
accGrav S = accGrav T := by
|
||
simp only [accGrav, SMSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
||
AddHom.coe_mk]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
repeat erw [hj]
|
||
rfl
|
||
|
||
/-- The `SU(2)` anomaly equation. -/
|
||
@[simp]
|
||
def accSU2 : (SMCharges n).Charges →ₗ[ℚ] ℚ where
|
||
toFun S := ∑ i, (3 * Q S i + L S i)
|
||
map_add' S T := by
|
||
simp only
|
||
repeat rw [map_add]
|
||
simp [Pi.add_apply, mul_add]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
ring
|
||
map_smul' a S := by
|
||
simp only
|
||
repeat erw [map_smul]
|
||
simp [HSMul.hSMul, SMul.smul]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
--rw [show Rat.cast a = a from rfl]
|
||
ring
|
||
|
||
/-- Extensionality lemma for `accSU2`. -/
|
||
lemma accSU2_ext {S T : (SMCharges n).Charges}
|
||
(hj : ∀ (j : Fin 5), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
||
accSU2 S = accSU2 T := by
|
||
simp only [accSU2, SMSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
||
AddHom.coe_mk]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
exact Mathlib.Tactic.LinearCombination.add_pf (congrArg (HMul.hMul 3) (hj 0)) (hj 3)
|
||
|
||
/-- The `SU(3)` anomaly equations. -/
|
||
@[simp]
|
||
def accSU3 : (SMCharges n).Charges →ₗ[ℚ] ℚ where
|
||
toFun S := ∑ i, (2 * Q S i + U S i + D S i)
|
||
map_add' S T := by
|
||
simp only
|
||
repeat rw [map_add]
|
||
simp [Pi.add_apply, mul_add]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
ring
|
||
map_smul' a S := by
|
||
simp only
|
||
repeat erw [map_smul]
|
||
simp [HSMul.hSMul, SMul.smul]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
--rw [show Rat.cast a = a from rfl]
|
||
ring
|
||
|
||
/-- Extensionality lemma for `accSU3`. -/
|
||
lemma accSU3_ext {S T : (SMCharges n).Charges}
|
||
(hj : ∀ (j : Fin 5), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
||
accSU3 S = accSU3 T := by
|
||
simp only [accSU3, SMSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
||
AddHom.coe_mk]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
repeat erw [hj]
|
||
rfl
|
||
|
||
/-- The `Y²` anomaly equation. -/
|
||
@[simp]
|
||
def accYY : (SMCharges n).Charges →ₗ[ℚ] ℚ where
|
||
toFun S := ∑ i, (Q S i + 8 * U S i + 2 * D S i + 3 * L S i
|
||
+ 6 * E S i)
|
||
map_add' S T := by
|
||
simp only
|
||
repeat rw [map_add]
|
||
simp [Pi.add_apply, mul_add]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
ring
|
||
map_smul' a S := by
|
||
simp only
|
||
repeat erw [map_smul]
|
||
simp [HSMul.hSMul, SMul.smul]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
--rw [show Rat.cast a = a from rfl]
|
||
ring
|
||
|
||
/-- Extensionality lemma for `accYY`. -/
|
||
lemma accYY_ext {S T : (SMCharges n).Charges}
|
||
(hj : ∀ (j : Fin 5), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
|
||
accYY S = accYY T := by
|
||
simp only [accYY, SMSpecies_numberCharges, toSpecies_apply, Fin.isValue, LinearMap.coe_mk,
|
||
AddHom.coe_mk]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
repeat erw [hj]
|
||
rfl
|
||
|
||
/-- The quadratic bilinear map. -/
|
||
@[simps!]
|
||
def quadBiLin : BiLinearSymm (SMCharges n).Charges := BiLinearSymm.mk₂
|
||
(fun S => ∑ i, (Q S.1 i * Q S.2 i +
|
||
- 2 * (U S.1 i * U S.2 i) +
|
||
D S.1 i * D S.2 i +
|
||
(- 1) * (L S.1 i * L S.2 i) +
|
||
E S.1 i * E S.2 i))
|
||
(by
|
||
intro a S T
|
||
simp only
|
||
rw [Finset.mul_sum]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
repeat erw [map_smul]
|
||
simp [HSMul.hSMul, SMul.smul]
|
||
ring)
|
||
(by
|
||
intro S1 S2 T
|
||
simp only
|
||
rw [← Finset.sum_add_distrib]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
repeat erw [map_add]
|
||
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue, neg_mul,
|
||
one_mul]
|
||
ring)
|
||
(by
|
||
intro S T
|
||
simp only [SMSpecies_numberCharges, toSpecies_apply, Fin.isValue, neg_mul, one_mul]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
ring)
|
||
|
||
/-- The quadratic anomaly cancellation condition. -/
|
||
@[simp]
|
||
def accQuad : HomogeneousQuadratic (SMCharges n).Charges :=
|
||
(@quadBiLin n).toHomogeneousQuad
|
||
|
||
/-- Extensionality lemma for `accQuad`. -/
|
||
lemma accQuad_ext {S T : (SMCharges n).Charges}
|
||
(h : ∀ j, ∑ i, ((fun a => a^2) ∘ toSpecies j S) i =
|
||
∑ i, ((fun a => a^2) ∘ toSpecies j T) i) :
|
||
accQuad S = accQuad T := by
|
||
simp only [HomogeneousQuadratic, accQuad, BiLinearSymm.toHomogeneousQuad_apply]
|
||
erw [← quadBiLin.toFun_eq_coe]
|
||
rw [quadBiLin]
|
||
simp only [quadBiLin, BiLinearSymm.mk₂, AddHom.toFun_eq_coe, AddHom.coe_mk, LinearMap.coe_mk]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
ring_nf
|
||
erw [h 0, h 1, h 2, h 3, h 4]
|
||
rfl
|
||
|
||
/-- The trilinear function defining the cubic. -/
|
||
@[simps!]
|
||
def cubeTriLin : TriLinearSymm (SMCharges n).Charges := TriLinearSymm.mk₃
|
||
(fun S => ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
|
||
+ 3 * ((U S.1 i) * (U S.2.1 i) * (U S.2.2 i))
|
||
+ 3 * ((D S.1 i) * (D S.2.1 i) * (D S.2.2 i))
|
||
+ 2 * ((L S.1 i) * (L S.2.1 i) * (L S.2.2 i))
|
||
+ ((E S.1 i) * (E S.2.1 i) * (E S.2.2 i))))
|
||
(by
|
||
intro a S T R
|
||
simp only
|
||
rw [Finset.mul_sum]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
repeat erw [map_smul]
|
||
simp [HSMul.hSMul, SMul.smul]
|
||
ring
|
||
)
|
||
(by
|
||
intro S T R L
|
||
simp only
|
||
rw [← Finset.sum_add_distrib]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
repeat erw [map_add]
|
||
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue]
|
||
ring
|
||
)
|
||
(by
|
||
intro S T L
|
||
simp only [SMSpecies_numberCharges, toSpecies_apply, Fin.isValue]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
ring
|
||
)
|
||
(by
|
||
intro S T L
|
||
simp only [SMSpecies_numberCharges, toSpecies_apply, Fin.isValue]
|
||
apply Fintype.sum_congr
|
||
intro i
|
||
ring
|
||
)
|
||
|
||
/-- The cubic acc. -/
|
||
@[simp]
|
||
def accCube : HomogeneousCubic (SMCharges n).Charges := cubeTriLin.toCubic
|
||
|
||
/-- Extensionality lemma for `accCube`. -/
|
||
lemma accCube_ext {S T : (SMCharges n).Charges}
|
||
(h : ∀ j, ∑ i, ((fun a => a^3) ∘ toSpecies j S) i =
|
||
∑ i, ((fun a => a^3) ∘ toSpecies j T) i) :
|
||
accCube S = accCube T := by
|
||
simp only [HomogeneousCubic, accCube, cubeTriLin, TriLinearSymm.toCubic_apply,
|
||
TriLinearSymm.mk₃_toFun_apply_apply]
|
||
repeat erw [Finset.sum_add_distrib]
|
||
repeat erw [← Finset.mul_sum]
|
||
ring_nf
|
||
have h1 : ∀ j, ∑ i, (toSpecies j S i)^3 = ∑ i, (toSpecies j T i)^3 := by
|
||
intro j
|
||
erw [h]
|
||
rfl
|
||
repeat rw [h1]
|
||
|
||
|
||
end SMACCs
|