PhysLean/HepLean/StandardModel/HiggsBoson/TargetSpace.lean
2024-06-26 11:54:02 -04:00

345 lines
14 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.Basic
import HepLean.StandardModel.Representations
import Mathlib.Data.Complex.Exponential
import Mathlib.Tactic.Polyrith
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
import Mathlib.Geometry.Manifold.ContMDiff.Product
import Mathlib.Algebra.QuadraticDiscriminant
import Mathlib.Geometry.Manifold.ContMDiff.NormedSpace
/-!
# The Higgs vector space
This file defines the target vector space of the Higgs boson, the potential on it,
and the representation of the SM gauge group acting on it.
This file is a import of `SM.HiggsBoson.Basic`.
## References
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
-/
universe v u
namespace StandardModel
noncomputable section
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- The complex vector space in which the Higgs field takes values. -/
abbrev HiggsVec := EuclideanSpace (Fin 2)
/-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → )` achieved by
casting vectors. -/
def higgsVecToFin2 : HiggsVec →L[] (Fin 2 → ) where
toFun x := x
map_add' x y := by simp
map_smul' a x := by simp
lemma smooth_higgsVecToFin2 : Smooth 𝓘(, HiggsVec) 𝓘(, Fin 2 → ) higgsVecToFin2 :=
ContinuousLinearMap.smooth higgsVecToFin2
namespace HiggsVec
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
@[simps!]
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) where
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
map_mul' := by
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
repeat rw [mul_assoc]
map_one' := by simp
/-- An orthonormal basis of higgsVec. -/
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) HiggsVec :=
EuclideanSpace.basisFun (Fin 2)
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) →* (HiggsVec →L[] HiggsVec) where
toFun g := LinearMap.toContinuousLinearMap
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ) :
matrixToLin (star g) = star (matrixToLin g) :=
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ) :
matrixToLin g ∈ unitary (HiggsVec →L[] HiggsVec) := by
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
simp
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
of `higgsVec`. -/
noncomputable def unitaryToLin : unitaryGroup (Fin 2) →* unitary (HiggsVec →L[] HiggsVec) where
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
map_mul' g h := by simp
map_one' := by simp
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
@[simps!]
def unitToLinear : unitary (HiggsVec →L[] HiggsVec) →* HiggsVec →ₗ[] HiggsVec :=
DistribMulAction.toModuleEnd HiggsVec
/-- The representation of the gauge group acting on `higgsVec`. -/
@[simps!]
def rep : Representation GaugeGroup HiggsVec :=
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
higgsRepUnitary_mul g φ
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
section potentialDefn
variable (μSq lambda : )
local notation "λ" => lambda
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
def potential (φ : HiggsVec) : := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
simp only [potential, neg_mul, norm_invariant]
lemma potential_as_quad (φ : HiggsVec) :
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
simp [potential]; ring
end potentialDefn
section potentialProp
variable {lambda : }
variable (μSq : )
variable (hLam : 0 < lambda)
local notation "λ" => lambda
lemma potential_snd_term_nonneg (φ : HiggsVec) :
0 ≤ λ * ‖φ‖ ^ 4 := by
rw [mul_nonneg_iff]
apply Or.inl
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true]
exact le_of_lt hLam
lemma zero_le_potential_discrim (φ : HiggsVec) :
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
have h1 := potential_as_quad μSq (λ) φ
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
· exact ne_of_gt hLam
lemma potential_eq_zero_sol (φ : HiggsVec)
(hV : potential μSq (λ) φ = 0) : φ = 0 ‖φ‖ ^ 2 = μSq / λ := by
have h1 := potential_as_quad μSq (λ) φ
rw [hV] at h1
have h2 : ‖φ‖ ^ 2 * (lambda * ‖φ‖ ^ 2 + -μSq ) = 0 := by
linear_combination h1
simp at h2
cases' h2 with h2 h2
simp_all
apply Or.inr
field_simp at h2 ⊢
ring_nf
linear_combination h2
lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
(φ : HiggsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
cases' (potential_eq_zero_sol μSq hLam φ hV) with h1 h1
exact h1
by_cases hμSqZ : μSq = 0
simpa [hμSqZ] using h1
refine ((?_ : ¬ 0 ≤ μSq / λ) (?_)).elim
· simp_all [div_nonneg_iff]
intro h
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμSq hμSqZ)
· rw [← h1]
exact sq_nonneg ‖φ‖
lemma potential_bounded_below (φ : HiggsVec) :
- μSq ^ 2 / (4 * (λ)) ≤ potential μSq (λ) φ := by
have h1 := zero_le_potential_discrim μSq hLam φ
simp [discrim] at h1
ring_nf at h1
rw [← neg_le_iff_add_nonneg'] at h1
have h3 : (λ) * potential μSq (λ) φ * 4 = (4 * λ) * potential μSq (λ) φ := by
ring
rw [h3] at h1
have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * λ )).mpr h1
ring_nf at h2 ⊢
exact h2
lemma potential_bounded_below_of_μSq_nonpos {μSq : }
(hμSq : μSq ≤ 0) (φ : HiggsVec) : 0 ≤ potential μSq (λ) φ := by
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
field_simp [mul_nonpos_iff]
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
field_simp [discrim, hV]
lemma potential_eq_bound_higgsVec_sq (φ : HiggsVec)
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
‖φ‖ ^ 2 = μSq / (2 * λ) := by
have h1 := potential_as_quad μSq (λ) φ
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
(potential_eq_bound_discrim_zero μSq hLam φ hV)] at h1
simp_rw [h1, neg_neg]
exact ne_of_gt hLam
lemma potential_eq_bound_iff (φ : HiggsVec) :
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
(fun h ↦ by
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by ring_nf
field_simp [potential, hv, h]
ring_nf)
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : }
(hμSq : μSq ≤ 0) (φ : HiggsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h)
(fun h ↦ by simp [potential, h])
lemma potential_eq_bound_IsMinOn (φ : HiggsVec)
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
IsMinOn (potential μSq lambda) Set.univ φ := by
rw [isMinOn_univ_iff, hv]
exact fun x ↦ potential_bounded_below μSq hLam x
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : }
(hμSq : μSq ≤ 0) (φ : HiggsVec) (hv : potential μSq lambda φ = 0) :
IsMinOn (potential μSq lambda) Set.univ φ := by
rw [isMinOn_univ_iff, hv]
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
lemma potential_bound_reached_of_μSq_nonneg {μSq : } (hμSq : 0 ≤ μSq) :
∃ (φ : HiggsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
use ![√(μSq/(2 * lambda)), 0]
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
simp [PiLp.norm_sq_eq_of_L2]
field_simp [mul_pow]
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq : } (hμSq : 0 ≤ μSq) :
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
apply Iff.intro <;> rw [← potential_eq_bound_iff μSq hLam φ]
· intro h
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
have hm := isMinOn_univ_iff.mp h φm
rw [hφ] at hm
exact (Real.partialOrder.le_antisymm _ _ (potential_bounded_below μSq hLam φ) hm).symm
· exact potential_eq_bound_IsMinOn μSq hLam φ
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : } (hμSq : μSq ≤ 0) :
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
apply Iff.intro <;> rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ]
· intro h
have h0 := isMinOn_univ_iff.mp h 0
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
end potentialProp
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
vector to zero, and the second component to a real -/
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) :=
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
lemma rotateMatrix_star (φ : HiggsVec) :
star φ.rotateMatrix =
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
simp_rw [star, rotateMatrix, conjTranspose]
ext i j
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
have h1 : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp [rotateMatrix, det_fin_two]
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) := by
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
erw [mul_fin_two, one_fin_two]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
ext i j
fin_cases i <;> fin_cases j <;> field_simp
<;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
· ring_nf
· ring_nf
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) :=
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
vector to zero, and the second component to a real -/
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
rw [rep_apply]
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
ext i
fin_cases i
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
ring_nf
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
have : (‖φ‖ : ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
field_simp
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
∃ (g : GaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
by_cases h : φ = 0
· use ⟨1, 1, 1⟩
simp [h]
ext i
fin_cases i <;> rfl
· use rotateGuageGroup h
exact rotateGuageGroup_apply h
end HiggsVec
end
end StandardModel