345 lines
14 KiB
Text
345 lines
14 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.StandardModel.Basic
|
||
import HepLean.StandardModel.Representations
|
||
import Mathlib.Data.Complex.Exponential
|
||
import Mathlib.Tactic.Polyrith
|
||
import Mathlib.Geometry.Manifold.Instances.Real
|
||
import Mathlib.RepresentationTheory.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||
import Mathlib.Geometry.Manifold.ContMDiff.Product
|
||
import Mathlib.Algebra.QuadraticDiscriminant
|
||
import Mathlib.Geometry.Manifold.ContMDiff.NormedSpace
|
||
/-!
|
||
# The Higgs vector space
|
||
|
||
This file defines the target vector space of the Higgs boson, the potential on it,
|
||
and the representation of the SM gauge group acting on it.
|
||
|
||
This file is a import of `SM.HiggsBoson.Basic`.
|
||
|
||
## References
|
||
|
||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
||
|
||
-/
|
||
universe v u
|
||
namespace StandardModel
|
||
noncomputable section
|
||
|
||
open Manifold
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
/-- The complex vector space in which the Higgs field takes values. -/
|
||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||
|
||
|
||
/-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` achieved by
|
||
casting vectors. -/
|
||
def higgsVecToFin2ℂ : HiggsVec →L[ℝ] (Fin 2 → ℂ) where
|
||
toFun x := x
|
||
map_add' x y := by simp
|
||
map_smul' a x := by simp
|
||
|
||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||
|
||
namespace HiggsVec
|
||
|
||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||
@[simps!]
|
||
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||
map_mul' := by
|
||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
|
||
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
|
||
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||
repeat rw [mul_assoc]
|
||
map_one' := by simp
|
||
|
||
/-- An orthonormal basis of higgsVec. -/
|
||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||
|
||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||
toFun g := LinearMap.toContinuousLinearMap
|
||
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
|
||
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
|
||
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
|
||
|
||
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
||
matrixToLin (star g) = star (matrixToLin g) :=
|
||
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
|
||
|
||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||
matrixToLin g ∈ unitary (HiggsVec →L[ℂ] HiggsVec) := by
|
||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||
simp
|
||
|
||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||
of `higgsVec`. -/
|
||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (HiggsVec →L[ℂ] HiggsVec) where
|
||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||
map_mul' g h := by simp
|
||
map_one' := by simp
|
||
|
||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||
@[simps!]
|
||
def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[ℂ] HiggsVec :=
|
||
DistribMulAction.toModuleEnd ℂ HiggsVec
|
||
|
||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||
@[simps!]
|
||
def rep : Representation ℂ GaugeGroup HiggsVec :=
|
||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||
|
||
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||
|
||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||
higgsRepUnitary_mul g φ
|
||
|
||
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||
|
||
section potentialDefn
|
||
|
||
variable (μSq lambda : ℝ)
|
||
local notation "λ" => lambda
|
||
|
||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||
def potential (φ : HiggsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||
|
||
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
|
||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||
simp only [potential, neg_mul, norm_invariant]
|
||
|
||
lemma potential_as_quad (φ : HiggsVec) :
|
||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||
simp [potential]; ring
|
||
|
||
end potentialDefn
|
||
section potentialProp
|
||
|
||
variable {lambda : ℝ}
|
||
variable (μSq : ℝ)
|
||
variable (hLam : 0 < lambda)
|
||
local notation "λ" => lambda
|
||
|
||
lemma potential_snd_term_nonneg (φ : HiggsVec) :
|
||
0 ≤ λ * ‖φ‖ ^ 4 := by
|
||
rw [mul_nonneg_iff]
|
||
apply Or.inl
|
||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true]
|
||
exact le_of_lt hLam
|
||
|
||
|
||
lemma zero_le_potential_discrim (φ : HiggsVec) :
|
||
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
|
||
have h1 := potential_as_quad μSq (λ) φ
|
||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
|
||
· exact ne_of_gt hLam
|
||
|
||
lemma potential_eq_zero_sol (φ : HiggsVec)
|
||
(hV : potential μSq (λ) φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / λ := by
|
||
have h1 := potential_as_quad μSq (λ) φ
|
||
rw [hV] at h1
|
||
have h2 : ‖φ‖ ^ 2 * (lambda * ‖φ‖ ^ 2 + -μSq ) = 0 := by
|
||
linear_combination h1
|
||
simp at h2
|
||
cases' h2 with h2 h2
|
||
simp_all
|
||
apply Or.inr
|
||
field_simp at h2 ⊢
|
||
ring_nf
|
||
linear_combination h2
|
||
|
||
lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
|
||
(φ : HiggsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
|
||
cases' (potential_eq_zero_sol μSq hLam φ hV) with h1 h1
|
||
exact h1
|
||
by_cases hμSqZ : μSq = 0
|
||
simpa [hμSqZ] using h1
|
||
refine ((?_ : ¬ 0 ≤ μSq / λ) (?_)).elim
|
||
· simp_all [div_nonneg_iff]
|
||
intro h
|
||
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμSq hμSqZ)
|
||
· rw [← h1]
|
||
exact sq_nonneg ‖φ‖
|
||
|
||
lemma potential_bounded_below (φ : HiggsVec) :
|
||
- μSq ^ 2 / (4 * (λ)) ≤ potential μSq (λ) φ := by
|
||
have h1 := zero_le_potential_discrim μSq hLam φ
|
||
simp [discrim] at h1
|
||
ring_nf at h1
|
||
rw [← neg_le_iff_add_nonneg'] at h1
|
||
have h3 : (λ) * potential μSq (λ) φ * 4 = (4 * λ) * potential μSq (λ) φ := by
|
||
ring
|
||
rw [h3] at h1
|
||
have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * λ )).mpr h1
|
||
ring_nf at h2 ⊢
|
||
exact h2
|
||
|
||
lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||
(hμSq : μSq ≤ 0) (φ : HiggsVec) : 0 ≤ potential μSq (λ) φ := by
|
||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||
field_simp [mul_nonpos_iff]
|
||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||
|
||
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
|
||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||
field_simp [discrim, hV]
|
||
|
||
lemma potential_eq_bound_higgsVec_sq (φ : HiggsVec)
|
||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
|
||
‖φ‖ ^ 2 = μSq / (2 * λ) := by
|
||
have h1 := potential_as_quad μSq (λ) φ
|
||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||
(potential_eq_bound_discrim_zero μSq hLam φ hV)] at h1
|
||
simp_rw [h1, neg_neg]
|
||
exact ne_of_gt hLam
|
||
|
||
lemma potential_eq_bound_iff (φ : HiggsVec) :
|
||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
|
||
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
|
||
(fun h ↦ by
|
||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by ring_nf
|
||
field_simp [potential, hv, h]
|
||
ring_nf)
|
||
|
||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : ℝ}
|
||
(hμSq : μSq ≤ 0) (φ : HiggsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h)
|
||
(fun h ↦ by simp [potential, h])
|
||
|
||
lemma potential_eq_bound_IsMinOn (φ : HiggsVec)
|
||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||
rw [isMinOn_univ_iff, hv]
|
||
exact fun x ↦ potential_bounded_below μSq hLam x
|
||
|
||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : ℝ}
|
||
(hμSq : μSq ≤ 0) (φ : HiggsVec) (hv : potential μSq lambda φ = 0) :
|
||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||
rw [isMinOn_univ_iff, hv]
|
||
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||
|
||
lemma potential_bound_reached_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||
∃ (φ : HiggsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||
use ![√(μSq/(2 * lambda)), 0]
|
||
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
|
||
simp [PiLp.norm_sq_eq_of_L2]
|
||
field_simp [mul_pow]
|
||
|
||
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
|
||
apply Iff.intro <;> rw [← potential_eq_bound_iff μSq hLam φ]
|
||
· intro h
|
||
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
|
||
have hm := isMinOn_univ_iff.mp h φm
|
||
rw [hφ] at hm
|
||
exact (Real.partialOrder.le_antisymm _ _ (potential_bounded_below μSq hLam φ) hm).symm
|
||
· exact potential_eq_bound_IsMinOn μSq hLam φ
|
||
|
||
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
||
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
|
||
apply Iff.intro <;> rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ]
|
||
· intro h
|
||
have h0 := isMinOn_univ_iff.mp h 0
|
||
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
|
||
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
|
||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
|
||
|
||
end potentialProp
|
||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||
vector to zero, and the second component to a real -/
|
||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
|
||
|
||
lemma rotateMatrix_star (φ : HiggsVec) :
|
||
star φ.rotateMatrix =
|
||
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
|
||
simp_rw [star, rotateMatrix, conjTranspose]
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||
|
||
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
field_simp [rotateMatrix, det_fin_two]
|
||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||
|
||
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||
erw [mul_fin_two, one_fin_two]
|
||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
ext i j
|
||
fin_cases i <;> fin_cases j <;> field_simp
|
||
<;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||
· ring_nf
|
||
· ring_nf
|
||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||
|
||
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||
|
||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||
vector to zero, and the second component to a real -/
|
||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
|
||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||
|
||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||
rw [rep_apply]
|
||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
|
||
ext i
|
||
fin_cases i
|
||
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
|
||
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||
ring_nf
|
||
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
|
||
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
|
||
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||
field_simp
|
||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||
|
||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||
∃ (g : GaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||
by_cases h : φ = 0
|
||
· use ⟨1, 1, 1⟩
|
||
simp [h]
|
||
ext i
|
||
fin_cases i <;> rfl
|
||
· use rotateGuageGroup h
|
||
exact rotateGuageGroup_apply h
|
||
|
||
end HiggsVec
|
||
|
||
end
|
||
end StandardModel
|