PhysLean/HepLean/Mathematics/Fin.lean
2024-10-18 10:24:49 +00:00

252 lines
8.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.PiTensorProduct
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
/-!
# Fin lemmas
The purpose of this file is to define some results Fin currently
in Mathlib.
At some point these should either be up-streamed to Mathlib or replaced with definitions already
in Mathlib.
-/
namespace HepLean.Fin
open Fin
variable {n : Nat}
def predAboveI (i x : Fin n.succ.succ) : Fin n.succ :=
if h : x.val < i.val then
⟨x.val, by omega⟩
else
⟨x.val - 1, by
by_cases hx : x = 0
· omega
· omega⟩
lemma predAboveI_self (i : Fin n.succ.succ) : predAboveI i i = ⟨i.val - 1, by omega⟩ := by
simp [predAboveI]
@[simp]
lemma predAboveI_succAbove (i : Fin n.succ.succ) (x : Fin n.succ) :
predAboveI i (Fin.succAbove i x) = x := by
simp [predAboveI, Fin.succAbove, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
simp [Fin.lt_def] at h1 h2
omega
· rfl
lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
Fin.succAbove i (predAboveI i x) = x := by
simp [Fin.succAbove, predAboveI, Fin.ext_iff]
split_ifs
· rfl
· rename_i h1 h2
rw [Fin.lt_def] at h1 h2
simp
simp at h2
rw [Fin.le_def] at h2
omega
· rename_i h1 h2
simp at h1
rw [Fin.le_def] at h1
rw [Fin.lt_def] at h2
simp at h2
omega
· rename_i h1 h2
simp
simp at h1
rw [Fin.le_def] at h1
omega
lemma predAbove_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
· intro h
subst h
rw [succsAbove_predAboveI h]
· intro h
rw [← h]
simp
lemma predAboveI_lt {i x : Fin n.succ.succ} (h : x.val < i.val) :
predAboveI i x = ⟨x.val, by omega⟩ := by
simp [predAboveI, h]
lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
predAboveI i x = ⟨x.val - 1, by omega⟩ := by
simp [predAboveI, h]
omega
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
`i`th component. -/
def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
finSumFinEquiv.symm.trans <|
(Equiv.sumCongr (finSumFinEquiv.symm.trans (Equiv.sumComm (Fin i) (Fin 1)))
(Equiv.refl (Fin (n-i)))).trans <|
(Equiv.sumAssoc (Fin 1) (Fin i) (Fin (n - i))).trans <|
Equiv.sumCongr (Equiv.refl (Fin 1)) (finSumFinEquiv.trans (finCongr (by omega)))
lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
finExtractOne i i = Sum.inl 0 := by
simp [finExtractOne]
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i) ) ⟨i.1, lt_add_one i.1⟩ := by
simp [Fin.ext_iff]
rw [h1, finSumFinEquiv_symm_apply_castAdd]
simp
have h2 : @Fin.mk (↑i + 1) ↑i (lt_add_one i.1) = Fin.natAdd i.val 1 := by
simp [Fin.ext_iff]
rw [h2, finSumFinEquiv_symm_apply_natAdd]
rfl
lemma finExtractOne_symm_inr {n : } (i : Fin n.succ) :
(finExtractOne i).symm ∘ Sum.inr = i.succAbove := by
ext x
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
change (finSumFinEquiv
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
by_cases hi : x.1 < i.1
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inl ⟨x, hi⟩ := by
rw [← finSumFinEquiv_symm_apply_castAdd]
apply congrArg
ext
simp
rw [h1]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inl, Sum.map_inl,
Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inr, finSumFinEquiv_apply_left, Fin.castAdd_mk]
rw [Fin.succAbove]
split
· rfl
rename_i hn
simp_all only [Nat.succ_eq_add_one, not_lt, Fin.le_def, Fin.coe_castSucc, Fin.val_succ,
self_eq_add_right, one_ne_zero]
omega
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
Sum.inr ⟨x - i, by omega⟩ := by
rw [← finSumFinEquiv_symm_apply_natAdd]
apply congrArg
ext
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
omega
rw [h1, Fin.succAbove]
split
· rename_i hn
simp_all [Fin.lt_def]
simp only [Nat.succ_eq_add_one, Equiv.sumAssoc_symm_apply_inr_inr, Sum.map_inr, id_eq,
finSumFinEquiv_apply_right, Fin.natAdd_mk, Fin.val_succ]
omega
@[simp]
lemma finExtractOne_symm_inr_apply {n : } (i : Fin n.succ) (x : Fin n) :
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
@[simp]
lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
(finExtractOne i).symm (Sum.inl 0) = i := by
simp only [Nat.succ_eq_add_one, finExtractOne, Fin.isValue, Equiv.symm_trans_apply, finCongr_symm,
Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl,
Sum.map_inl, id_eq, Equiv.sumAssoc_symm_apply_inl, Equiv.sumComm_symm, Equiv.sumComm_apply,
Sum.swap_inl, finSumFinEquiv_apply_right, finSumFinEquiv_apply_left, finCongr_apply]
ext
rfl
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
lemma finExtractOnPermHom_inv (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
(finExtractOnPermHom (σ i) σ.symm) ∘ (finExtractOnPermHom i σ) = id := by
funext x
simp [finExtractOnPermHom]
by_cases h : σ (i.succAbove x) < σ i
· rw [predAboveI_lt h, Fin.succAbove_of_castSucc_lt]
· simp
· simp_all [Fin.lt_def]
have hσ : σ (i.succAbove x) ≠ σ i := by
simp only [Nat.succ_eq_add_one, ne_eq, EmbeddingLike.apply_eq_iff_eq]
exact Fin.succAbove_ne i x
have hn : σ i < σ (i.succAbove x) := by omega
rw [predAboveI_ge hn]
rw [Fin.succAbove_of_le_castSucc]
· simp
trans predAboveI i (σ.symm (σ (i.succAbove x)))
· congr
exact Nat.sub_add_cancel (Fin.lt_of_le_of_lt (Fin.zero_le (σ i)) hn)
simp
rw [Fin.le_def]
simp
omega
def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ ≃ Fin n.succ where
toFun x := finExtractOnPermHom i σ x
invFun x := finExtractOnPermHom (σ i) σ.symm x
left_inv x := by
simpa using congrFun (finExtractOnPermHom_inv i σ) x
right_inv x := by
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
the `i` and `(i.succAbove j)`. -/
def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
(finExtractOne i).trans <|
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
@[simp]
lemma finExtractTwo_apply_fst {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by
simp [finExtractTwo]
simp [finExtractOne_apply_eq]
lemma finExtractTwo_symm_inr {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm ∘ Sum.inr = i.succAbove ∘ j.succAbove := by
rw [finExtractTwo]
ext1 x
simp
@[simp]
lemma finExtractTwo_symm_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
(finExtractTwo i j).symm (Sum.inr x) = i.succAbove (j.succAbove x) := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inr_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inr 0)) = i.succAbove j := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_symm_inl_inl_apply {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
rw [finExtractTwo]
simp
@[simp]
lemma finExtractTwo_apply_snd {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j (i.succAbove j) = Sum.inl (Sum.inr 0) := by
rw [← Equiv.eq_symm_apply]
simp
end HepLean.Fin